International bottom trawl survey in the Mediterranean

Instruction manual

Version 9

2017

MEDITS-Handbook. Version n. 9, 2017, MEDITS Working Group : 106 pp. The MEDITS programme is conducted since 2002 in compliance with the European framework for the collection and management of fisheries data (Regulation EC 1543/2000). This framework was first reformed in 2008 (Regulation EC 199/2008) resulting in the Data Collection Framework (DCF) and lastly in 2017 (Regulation EU 2017/1004 recast). Under this framework the Member States collect, manage and make available a wide range of fisheries data needed for scientific advice. The financial support to the MEDITS programme is from the European Commission (DG MARE) and from the Member States.

This document does not necessarily reflect the views of the European Commission as well as of the involved Member States of the European Union. In no way it anticipates any future opinion of these bodies. Permission to copy, or reproduce the contents of this report is granted subject to citation of the source of this material.

Preamble

The MEDITS project started in 1994 within the cooperation between several research Institutes from four Mediterranean Member States (France, Greece, Italy, Spain) of the European Union. Along the time, till to the advent of the European framework for the collection and management of fisheries data, new partners from Slovenia, Croatia, Albania, Montenegro, Malta and Cyprus joined the MEDITS project.

The target was to conduct a common bottom trawl survey in the Mediterranean in which all the participants use the same gear, the same sampling protocol and the same methodology.

A first manual with the major specifications was prepared at the start of the project. The manual was revised in 1995, following the 1994 survey and taking into account the methodological improvements acquired during the first survey. Along the years, several improvements were introduced. A new version of the manual was issued each time it was felt necessary to make improvements to the previous protocol. In any case, each time the MEDITS Co-ordination Committee ensured that amendments did not disrupt the consistency of the series. The third version of this manual was edited in 1999, while the fourth one served as a manual for the surveys carried out between 2000 and 2006. The fifth version, although issued in 2007, included improvements adopted by the MEDITS group since 2005, and was the protocol followed from 2005 until 2011 surveys.

In 2012 the revision 6 was issued, which included substantial modifications to the MEDITS manual, though not affecting the main characteristics of the protocol regarding the sampling scheme, methods and gear. This new version included changes in the list of target species and faunistic categories, which were both expanded. In addition, the protocol for otolith sampling and measurements of biological parameters was included, while adjusting the storage data formats accordingly.

The version number 7, in continuity with the previous ones, was amending and innovating some aspects, while incorporating more specific and standardised gear checks and proposing a common protocol for the voluntary collection of data on marine litters, in agreements with the requirements of the Marine Strategy Directive Framework (Directive 2008/56/EC).

The version 8 introduced more details on the checks of the MEDITS gear and on the aspects related to the taxonomic list and categories.

To ease the MEDITS Handbook consultation, the present version 9 separates out the TM list from the MEDITS Handbook and makes the former available in an electronic format only at the web site: <u>http://www.sibm.it/MEDITS%202011/principale%20project.htm</u>.

Co-ordination of the MEDITS program (2017)

Co-ordination

Since 2017 the MEDITS program is co-ordinated at international level by George Tserpes (HCMR, Greece).

The MEDITS group is currently composed as in table 1. The members of the Steering Committee are indicated by the letter N in the same table.

GSA	Country	Scientist Name	Affiliation	Address/Telephone	Email address
	Spain	Enric Massutí N	I.E.O. Instituto Español de Oceanografía, Spain	IEO- Centro Oceanográfico de Baleares P.O. Box 291 07080 Palma Phone: (34) 971401877 Fax: (34) 971404945	enric.massuti@ba.ieo.es
1,2	Spain	Cristina Garcia R	I.E.O., Centro Oceanográfico de Málaga	Muelle Pesquero s/n; 29640 Fuengirola, Tel. +34 952472261 Fax: +34 952463808	cristina.garcia@ma.ieo.es
5	Spain	Antoni Quetglas R	I.E.O Centro Oceanográfico de Baleares;	P.O. Box 291 07080 Palma Phone: (34) 971401877 Fax: (34) 971404945	toni.quetglas@ba.ieo.es
6	Spain	Antonio Esteban R	I.E.O Centro Oceanográfico de Murcia	Varadero nº 1 Apdo. 22 30740 San Pedro del Pinatar (Murcia) Tel: +34 968 179 410Fax: +34 968 184 441	antonio.esteban@mu.ieo.es
7,8	France	Angelique Jadaud N	Ifremer, Sète	Bd Jean Monnet, B.P. 171, 34203 Sète Cedex Tel. + 33 04 99 57 32 00 Fax: + 33 04 99 57 32 94	ajadaud@ifremer.fr
	Italy	Maria Teresa Spedicato N	COISPA - Tecnologia & Ricerca	Via dei Trulli 18/20, 70126 Bari Tel. +39 080 5433596 Fax: +39 080 5433586	spedicato@coispa.it
9	Italy	Stefano De Ranieri R	CIBM - Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (Livorno)	Viale Nazario Sauro 4, 57128 Livorno Tel. +39 0586 807287 Fax: +39 0586 809149	deranieri@cibm.it
10	Italy	Pierluigi Carbonara R	COISPA - Tecnologia & Ricerca	Via dei Trulli 18/20, 70126 Bari Tel. +39 080 5433596 Fax: +39 080 5433586	carbonara@coispa.it
11	Italy	Maria Cristina Follesa R	Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari	Via T. Fiorelli, 1, 09126 Cagliari Tel. +39 070 6758050/3 Fax: +39 070 380285	follesac@unica.it
15	Malta	Roberta Mifsud N	Ministry for Sustainable Development, the Environment and Climate Change, Malta	Department of Fisheries and Aquaculture, Ghammieri, Ngiered Road, Marsa MRS 3303, Malta Tel. +356 2292 1236 Fax: +356 2292 1221	roberta.mifsud@gov.mt
16	Italy	Germana Garofalo R	IAMC - Coastal Marine Environment Institute - CNR, Section of Mazara del Vallo (TP)	Via L. Vaccara, 61, 91026 Mazara del Vallo (TP) Tel. +39 0923 948966 Fax: +39 0923 906634	germana.garofalo@iamc.cnr.it
		Corrado	Laboratorio Biologia	Viale Adriatico, 1/N,	

 Table 1 List of National MEDITS coordinators and regional coordinators

		Piccinetti R	Marina e Pesca, Università di Bologna	61032, Fano (PS). Tel. +39 0721 802 689 Fax: +39 0721 801 654	
	Slovenia	Bojan Marceta N	Fishery Research Institute of Slovenia	Sp Gameljne 1211 Ljubljana-Smartno Tel.(0)1 2443400 Fax (0) 1 2443405	Bojan.Marceta@zzrs.si
	Croatia	Nedo Vrogc N	IOR - Institute of Oceanography and Fisheries (Split)	Šetalište I. Meštrovića 63, 21000 Split; tel: +(385) (21) 408000fax: +(385) (21) 358650	vrgoc@izor.hr
18	Italy	Giuseppe Lembo R	COISPA - Tecnologia & Ricerca	Via dei Trulli 18/20, 70126 BARI Tel. +39 080 5433596 Fax: +39 080 5433586	lembo@coispa.it
	Montene gro	Aleksandar Joksimovic N	Institute of Marine Biology, Kotor	POBox 69; 85 330 Kotor, Montenegro tel: +382 (0)32 302 040fax: +382 (0)32 334 570	acojo@ac.me
	Albania	Jerina Kolitari N	Laboratori i Akuakultures dhe Peshkimit, Durres	Laboratori i Akuakultures dhe Peshkimit, Durres	jerina_juka@yahoo.com
19	Italy	Porzia Maiorano R	Department of Biology - University of Bari	Via Orabona, 4 – 70125 Bari Tel. +39 0805442495 Fax: +39 0805443350	porzia.maiorano@uniba.it
20	Greece	Evgenia Lefkaditou R	HCMR, Hellenic Centre of Marine Research, Athens	Agios Kosnas, Elliniko, Athens	teuthis@hcmr.gr
	Greece	Panagiota Peristeraki N	HCMR, Hellenic Centre of Marine Research, Crete	P.O. Box 2214, Heraklion, 71003, CRETE Tel. +30 2810 337830 Fax: +30 2810 337823	notap@hcmr.gr
22	Greece	Kiparissis Sotiris R	FRI - Fisheries Research Institute, NAGREF - National Agricultural Research Foundation	Nea Peramos, 64007, Kavala GREECE Tel. +30 25940 22691 Fax: +30 25940 22222	skipariss@inale.gr
23	Greece	George Tserpes I and R	Hellenic Center for Marine Research, Crete	P.O. Box 2214, Heraklion, 71003, CRETE Tel. +30 2810 337851 Fax: +30 2810 337823	gtserpes@hcmr.gr
25	Cyprus	Ioannis Thasitis N	DFMR - Department of Fisheries and Marine Research, Ministry of Agriculture, Rural Development and Environment	Fisheries Resources Division 101 Vithleem str., 1416 - Nicosia, Tel.: +357 22 807 842 Fax: + 357 22 77 59 55	ithasitis@dfmr.moa.gov.cy

R= Regional Coordinator; N=National Coordinator; I=International Coordinator

Contents

INTRODUCTION	9
[1] SPECIFICATIONS OF THE SAMPLING GEAR	11
1.1 THE TRAWL	11
1.2 THE RIGGING	12
1.3 THE DOORS (OTTER BOARDS)	12
1.4 WARP DIAMETER AND LENGTH	13
1.5 COMPLEMENTARY EQUIPMENT AND MONITORING SYSTEMS	13
[2] SAMPLING METHODOLOGY	14
2.1 VESSEL CHARACTERISTICS	14
2.2 PERIOD OF THE SURVEY	
2.3 HAULS LOCALISATION	14
2.4 OPERATING THE GEAR	
2.4.1 Sampling period in the day	14
2.4.2 Haul speed and duration	
2.4.3 HAUL START AND END DEFINITION	
2.4.4 HAUL ORIENTATION	
2.4.5 MANAGING THE END OF SHOOTING OPERATIONS AND THE START OF THE HAUL	
2.4.6 TRAWL GEOMETRY WHILE FISHING	
2.4.7 WEAR OF THE TRAWL 2.4.8 CHECKS OF THE SAMPLING EQUIPMENT	
[3] TREATMENT OF THE CATCHES	
3.1 SAMPLINGS	18
3.2 BIOLOGICAL PARAMETERS	19
3.2.1 Measurement units	
3.2.2 Sex and maturity 3.2.3 Otolith, weight and maturity stage at individual level	
3.3 OTHER PARAMETERS	
[4] INTER-CALIBRATION OF THE WORK AT SEA	
[5] DATA EXCHANGE FORMATS	
5.1 GENERAL INFORMATION	
5.2 FILES TYPE	
5.3 FILES STRUCTURE AND INFORMATION CODING	
[6] GEAR STANDARDIZATION AND MONITORING	

[7] THE PROTOCOL FOR MONITORING MARINE LITTER	
[8] OTHER ASPECTS (MEDITS RULES)	26
FIGURES OF GEAR SPECIFICATIONS	27
[9] ANNEXES	34
I. CODES FOR COUNTRIES, VESSELS AND GEAR	35
II. STRATIFICATION SCHEME (BY STRATUM NUMBER) (STRATUM: POSIT 125-129 IN THE FILE A)	
III. TARGET NUMBER OF HAULS BY AREA (BASED ON 2002 ONWARDS RECORDS)	42
IV. CODES FOR RECORDED SPECIES, OF THE OBSERVATIONS ON HAUL AND OF QUADRANTS	
V. CODES OF TAXONOMIC CATEGORIES. FORM TO INTRODUCE NEW SPECIES CODES	44
VI. LIST OF THE REFERENCE SPECIES	46
VII. STANDARD LENGTH MEASUREMENT FOR CRUSTACEANS, CEPHALOPODS AND FISH	50
VIII. CODES OF SEXUAL MATURITY FOR FISH, CRUSTACEANS AND CEPHALOPODS	53
IX. PROTOCOL FOR CONVERSION OF MATURITY SCALES FROM THE SCA PROPOSED AT THE WORKSHOPS ON MATURITY STAGES AND THE MEDI SCALES	TS
X. FORMAT OF THE TYPE A FILES (DATA ON THE HAUL)	60
Annex X.a	
XI. FORMAT OF THE TYPE B FILES (CATCHES BY HAUL)	
XI. FORMAT OF THE TYPE B FILES (CATCHES BY HAUL) XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS)	62 L
XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA	62 L 63
XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT	62 L 63
XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL)	62 L 63 64 65
 XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL) XIII.B. FORMAT OF TYPE L FILES (LITTER RECORDING) XIV. PROTOCOL FOR SAMPLING OTOLITHS, INDIVIDUAL WEIGHT AND MATURITY STAGES OF MEDITS TARGET SPECIES OBJECTIVES. 	62 L 63 64 65 66
 XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL) XIII.B. FORMAT OF TYPE L FILES (LITTER RECORDING) XIV. PROTOCOL FOR SAMPLING OTOLITHS, INDIVIDUAL WEIGHT AND MATURITY STAGES OF MEDITS TARGET SPECIES OBJECTIVES. SAMPLING FRAME. 	62 L 63 64 65 66 66
 XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL) XIII.B. FORMAT OF TYPE L FILES (LITTER RECORDING) XIV. PROTOCOL FOR SAMPLING OTOLITHS, INDIVIDUAL WEIGHT AND MATURITY STAGES OF MEDITS TARGET SPECIES OBJECTIVES. 	62 L 63 64 65 66 66 67
 XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL) XIII.B. FORMAT OF TYPE L FILES (LITTER RECORDING) XIV. PROTOCOL FOR SAMPLING OTOLITHS, INDIVIDUAL WEIGHT AND MATURITY STAGES OF MEDITS TARGET SPECIES OBJECTIVES	
 XII. FORMAT OF TYPE C FILES (LENGTH AND AGGREGATED BIOLOGICA) PARAMETERS) XIII.A. FORMAT OF TYPE E FILES (BIOLOGICAL PARAMETERS AT INDIVIDUAL LEVEL) XIII.B. FORMAT OF TYPE L FILES (LITTER RECORDING) XIV. PROTOCOL FOR SAMPLING OTOLITHS, INDIVIDUAL WEIGHT AND MATURITY STAGES OF MEDITS TARGET SPECIES OBJECTIVES	

XVI - TECHNICAL SPECIFICATIONS AND QUALITY CHECK OF THE 	MEDIIS
GEAR	
XVI.1 - GUIDELINES FOR THE GEAR QUALITY CONTROL	75
XVI.1 - OUDELINES FOR THE GEAR QUALITY CONTROL XVI.2 - QUALITY TIME-0 CONTROL CHECKLIST	
XVI.2 - QUALITY TIME-0 CONTROL CHECKLIST XVI.3. QUALITY PERIODIC/ANNUAL CONTROL CHECKLIST AND GEAR MAINTENANCE	
XVI.5. QUALITY PERIODIC/ANNUAL CONTROL CHECKLIST AND GEAR MAINTENANCE XVI.4 GLOSSARY OF TERMS AND REFERENCES TO THE ACRONYMS USED IN THE CUR	
A VI.4 GLOSSARY OF TERMS AND REFERENCES TO THE ACRONYMS USED IN THE CUR HANDBOOK	
NANDBOOK	
A V I.J LIST OF GEAR METRICS	
XVII - PROTOCOL FOR MONITORING MARINE LITTER ON A VOLUN'	TARY
XVII - PROTOCOL FOR MONITORING MARINE LITTER ON A VOLUN BASIS	
BASIS	
XVIII. INTERNAL RULES OF THE MEDITS GROUP	
BASIS XVIII. INTERNAL RULES OF THE MEDITS GROUP 1.OBJECTIVE OF THE DOCUMENT	
BASIS XVIII. INTERNAL RULES OF THE MEDITS GROUP 1.OBJECTIVE OF THE DOCUMENT 2.THE MEDITS SURVEY INITIATIVE	
BASIS XVIII. INTERNAL RULES OF THE MEDITS GROUP 1.OBJECTIVE OF THE DOCUMENT 2.THE MEDITS SURVEY INITIATIVE 3.THE MANDATE OF THE MEDITS GROUP	
BASIS XVIII. INTERNAL RULES OF THE MEDITS GROUP 1.OBJECTIVE OF THE DOCUMENT 2.THE MEDITS SURVEY INITIATIVE 3.THE MANDATE OF THE MEDITS GROUP 4.COMPOSITION OF THE MEDITS GROUP	
BASIS XVIII. INTERNAL RULES OF THE MEDITS GROUP 1.OBJECTIVE OF THE DOCUMENT 2.THE MEDITS SURVEY INITIATIVE 3.THE MANDATE OF THE MEDITS GROUP	

Introduction

This document is the ninth version of the first manual elaborated in the frame of the MEDITS international project to harmonise the sampling of demersal resources in the Mediterranean Sea.

It is the reference document for research institutes and teams contributing to the MEDITS surveys on the continental shelves and slopes in the Mediterranean (Fig. 1).

GFCM Geographical Sub-Areas (GSAs) (GFCM, 2009)

07 - Gulf of Lions 13 - Gulf of Hammamet 01 - Northern Alboran Sea 19 - Western Ionian Sea 25 - Cyprus Island 02 - Alboran Island 08 - Corsica Island 14 - Gulf of Gabes 20 - Eastern Ionian Sea 26 - South Levant 03 - Southern Alboran Sea 09 - Ligurian and North Tyrrhenian Sea 15 - Malta Island 21 - Southern Ionian Sea 27 - Levant 04 - Algeria 10 - South and Central Tyrrhenian Sea 16 - South of Sicily 22 - Aegean Sea 28 - Marmara Sea 11.1 - Sardinia (west) 11.2 - Sardinia (east) 29 - Black Sea 05 - Balearic Island 17 - Northern Adriatio 23 - Crete Island 06 - Northern Spain 12 - Northern Tunisia 18 - Southern Adriatic Sea 24 - North Levant 30 - Azov Sea

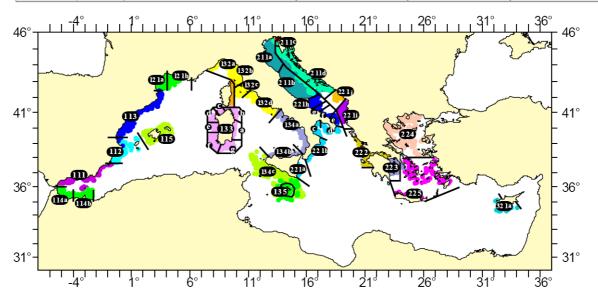


Fig. 1. General map of the area covered by the programme. Top: the GFCM GSAs (RES-GFCM/33/2009/2). Down: the MEDITS strata. Coloured: areas covered by the MEDITS surveys. The designations used and the presentation of cartographic data imply no line as for the juridicial status of the various areas neither as for the border lines between countries.

The manual describes the sampling gear characteristics (feature and handling), the design of the survey, the sampling methodology and the processing of samples. Finally, it gives the specifications of the data files for data storage and exchange.

This manual includes amendments and improvements to the MEDITS protocol as agreed by the MEDITS Co-ordination Committee up to the 2017 annual meeting. Considering the need for progressing towards new objectives (e.g common data-base) and amendments to be considered in the future, updates to this manual will be carried out as necessary.

The present version of the MEDITS Manual also includes the work performed in the Multidisciplinary Group on Gear Performance and Standardization of Gear Data Processing (MGGP) established at the MEDITS coordination meeting in Ljubljana (Slovenia, 6-8 March 2012). The MGGP ToRs related to the Technical specifications and quality check of the Medits gear were finalised during the MEDITS Coordination Meeting of 2013 (Heraklion, Greece, March 12-14, 2013). Thus, a new regularly check of the MEDITS gears (trawl, rigging, doors) and of the protocol-abiding has been plenary proposed and accepted. This protocol, updated in 2014 and further revised in 2015, to fix some technical details, is in the Annex XVI to the present handbook version 9 (2017).

In addition, the common protocol for the voluntary collection of data on Marine Litters, in agreements with the requirements of the Marine Strategy Directive Framework (Directive 2008/56/EC), is reported in the Annex XVII. This protocol was agreed at the MEDITS Coordination Meeting of 2013 (Heraklion, Greece, March 12-14, 2013) and further improved in 2014 and 2015.

[1] Specifications of the sampling gear

According to Bertrand et al. (1997) the adopted gear constitutes a compromise between different constraints. To increase the catch of demersal species, it has been designed with a vertical opening slightly superior to the most common professional gears used in the Mediterranean when the MEDITS survey started. The design of the gear has been drawn up by fishery technologists from specifications defined by the biologists.

1.1 The trawl

The sampling gear is a bottom trawl made of four panels.

Figure 2 shows a schematic drawing of this trawl (IFREMER reference GOC73).

This gear should be operated by a vessel with a towing power of at least 368 kW (500 HP) and 4.5 tons of bollard pull.

The most important gear specifications were:

- to be able to work in all the areas and at all the depths specified by the programme (10-800 m);
- to have a selectivity as low as possible so as to have good images of the populations sampled.

In practice the last requirement was the opposite of what is normally asked to the fishermen, which is to use good selective gears so as to allow the small size individuals to escape. This goal is generally obtained by imposing to all the commercial gears a minimum size for the meshes used. For the Mediterranean the present minimum legal mesh opening for the demersal trawl gears is currently a square-mesh of 40 mm or a diamond-mesh of 50 mm opening, but for the sampling gear to be used during the MEDITS surveys it was decided to limit the mesh size of the codend to **10 mm of mesh side**, which corresponds to about 20 mm of mesh opening.

Even if other sampling gears for survey purposes exist in the world (e.g. the GOV - Grande*OuvertureVerticale* trawl used in the North Sea surveys), it was decided to design a new trawl to better follow the required specifications and for a better adaptation to the particular characteristics of the Mediterranean Sea above mentioned.

For all the report and figures, the mesh side value, or half mesh, will be used to indicate the mesh dimensions. The mesh side is defined by the International Organization for Standardization (ISO 1107-1974 - Mesh Measurements, definitions) as:

- the distance between two sequential knots, measured from centre to centre when the yarn between those points is fully extended.

In some cases, the values of mesh opening, or inside measurement, will also be used, but only after an explicit declaration. For knotted netting, the opening of the mesh is defined by the same ISO standard, as the distance between two opposite knots in the same mesh when fully extended in the N-direction, which is the fore-aft direction along the net. For knotless netting it is defined as the distance between two opposite joints in the same meshes when fully extended along its longest possible axis.

On the plan in figure 2 the mesh sizes are indicated in bar length. The mesh numbers in height correspond to well finished and joined netting sections; the joining mesh should then be subtracted when cutting. The numbers of mesh in width do not include the side seams and these should then be added when cutting.

The nets should be made from good quality polyamide netting (nylon). It will however not be possible for the net manufacturer always to obtain sheet netting of exactly the same length as

specified in this manual. Thorough care must be taken to obtain materials with properties as close as possible to the ones specified in figure 2.

The headline should have **40 floats** resisting to an immersion of 1,300 m depth. Their diameter should be around 20 cm, their individual buoyancy of 2.7 kgf (\pm 5%), the total buoyancy of the 40 floats being around 108 kgf (\pm 5%). The 40 floats should be distributed along the headline as follows (figures 3 and 8):

- from the end of each wing, one float every 1.50 m, 5 times;
- one pair of floats every 1.50 m on the whole remaining length;
- in the headline bosom a small adjustment of the spacing is necessary.

With this number of floats the vertical opening of the trawl should reach 2.4 to 2.6 m depending on the horizontal opening.

A weighting chain (*ballast chain*) of 120 kg (Nr. 3×40) should be secured to the foot rope at 17 cm intervals (with a hanging height of at most 8 cm).

A supplementary chain (only one chain) of 15 kg (around 6.50 m and a diameter of 10 mm) should in addition be secured symmetrically on both parts of the belly bosom in the same way as the first one (garland of 17 cm in length).

1.2 The rigging

The general drawing of the rigging is given in figure 3.

Various details of mounting and connecting are shown in figure 4.

The upper bridle length is 30 m; the lower bridle length is 29 m, plus the adjustment chain of 1 m (the adjustement chain is only found on the lower legs).

To maintain the geometry of the trawl as constant as possible, **two bridle lengths are defined according to the depth**. They are given in the following table:

Depth (in meters)	10 - 200	201 - 800
Bridles length (in meters)	100	150

Following the results of an experiment carried out on board the RV/L'Europe in June 2000, it is recommended to increase the bridle length to 200 m at depths deeper than -500 m. This modification, even though not compulsory, may favour a better and faster contact of the trawl with the seabed.

1.3 The doors (Otter Boards)

The doors are also normalised. They are of type **MorgereWH S** (figures. 5 and 6). The adopted doors correspond to the size number 8. The warp is shackled in the fore hole of the bracket sheet (see arrow 1 in figure 2). The short parts of the external crowfoot are shackled in the most back part of the backside sheets, upper and lower (see arrow 2 in figure 2). The length of the backstrops (shackles not included) are as follow:

long external back-strops: 1.60 m

short upper and lower back-strops: 0.65 m (\pm 10%).

1.4 Warp diameter and length

Taking the characteristics of the trawl and the rigging into account, the warps should have a diameter of 16 mm, with a minimum thickness of 14 mm and a maximum of 22 mm.

The length of warps to be shot is determined by the operating depth.

The recommended relationship between depth and warp length is given in figure 7. The table in figure 7 gives different warp lengths for a range of warp constructions given by diameter (12-22 mm). The relationships are calculated based on the specifications of the net and doors. Also it is recommended that the warp length should not be less than 200 meters as it will decrease considerably the door spread and increasing the door instability.

Although in certain particular circumstances some adaptations can be made to this relationship, it is recommended to respect the depth/warp length ratio as far as possible.

For the vessels which are not equipped with a device to measure the length of warp shot, it is recommended to standardise the position of the last mark on the warp, for example at the most back warp block.

1.5 Complementary equipment and monitoring systems

The systematic use of a device (**SCANMAR**, **SIMRAD** or other sensors) to control the trawl geometry (vertical and horizontal openings, contact with the bottom) is highly recommended.

If this is not possible, measurements of the trawl geometry should be taken at various depths on board each vessel at the beginning of the survey to establish relationship between horizontal and vertical opening with parameters easy to measure, like depth and/or warp length.

The sensors should be positioned on the net as shown in figure 8.

Data of the net horizontal and vertical opening measured *in situ* or estimated for each haul, will be included in the TA data file, as specified further on in this manual.

Reliable models of horizontal- and vertical-net opening related to measured parameters or to some other available parameters (i.e. warp length, depth, etc.) will be used to estimate values of net openings and applied when necessary.

A net safety recovery system (**the pennant**) allowing the retrieval of the trawl by the codend can be installed. As far as possible, it is recommended to secure the line as shown in figure 8 and to take care of its fixations. The pennant must be sewed every 3.6 m at the starboard strengthening lacing. Rules for the use of the pennant must be adopted in order to avoid deformations of the gear geometry and drag. Ropes attached to the codend and terminating with a float must be avoided. Ropes starting from the codend and terminating to the wing tip are allowed only if connected to the strengthening lacing at regular intervals (every 1-1.5 m; figure 8).

[2] Sampling methodology

2.1 Vessel characteristics

The vessels used for the MEDITS surveys should have an engine of at least 370 kW to be able to tow the standard sampling gear (traction at ground run: 4.5 tons). It is strongly recommended that as far as possible the same vessel and crew be used every year in each area so as to reduce variations between years due to vessel effect. The list of the vessels used since the beginning of the survey series is given in the **Annex I**.

2.2 Period of the survey

The period of the MEDITS survey is **centred around June** (from May to July). It is strongly recommended to keep the sampling period consistent among years in order to reduce the time of the survey effect on the time series.

2.3 Hauls localisation

The hauls are positioned following a **depth stratified sampling scheme** with **random drawing of the positions within each stratum**. The number of positions in each stratum is proportional to the area of these strata. Except in the case of peculiar problems (damages noted in previous years, etc.), the hauls are made in the same position from year to year. The decision to make a haul in a given place should not be influenced by the presence of fish shoals detected with the sounder or the sonar.

The following depths are fixed in all areas as strata limits:

10 - 50 m, 51 - 100 m, 101 - 200 m, 201 - 500 m, 501 - 800 m.

Furthermore the strata are limited by lines more or less perpendicular to the coast, depending on the geographical characteristics of each area.

The adopted stratification schemes has been shown in figure 1, while strata are described in **Annex II**. The target number of hauls by area is given in **Annex III**.

It is strongly recommended to maintain the same scheme between years.

The *Posidonia sp.* meadows are excluded from the sampling scheme and should never be trawled.

2.4 Operating the gear

2.4.1 Sampling period in the day

The hauls must be performed only during **daylight**. The daylight period is defined as the time between 30 minutes after sunrise and 30 minutes before sunset.

2.4.2 Haul speed and duration

The standard fishing **speed is 3 knots** on the ground. This recommended speed is very important in order to ensure the best trawl geometry. The actual speed as well as the covered distance should be monitored and recorded.

It is highlighted that a speed lower than 2.8 knots can have a negative effect on the verticality and the stability of the doors which can lie down and get stucked into the mud. In deep waters a speed greater than 3.2 knots can cause the lifting of the gear out of the bottom and must be avoided.

The haul duration is fixed at 30 minutes on depths less than -200 m and at 60 minutes at depths more than -200 m. In case during the fishing operations the haul should be stopped before the completion of the standard duration, the haul can be considered valid if at least 2/3 of the time or of the distance have been successfully attained.

2.4.3 Haul start and end definition

The start of the haul is defined as the moment at which the trawl geometry (vertical and horizontal) is stabilised (cf. § 2.4.5).

The end of the haul is defined as the moment at which warp hauling begins.

The haul start and end times should be recorded in UT time (GMT) and not in the local time.

2.4.4 Haul orientation

In general, hauls should be performed at constant depth. The depth variations during the haul should not exceed \pm 5% relative to the initial depth. The discrepancies to this target should be recorded. In case of a significant difference between the depth under the vessel as recorded by the eco-sounder onboard and the depth at which the trawl is, the recorded depth should be taken as the latter.

As far as possible and in respect of the previous constraints, the hauls should be rectilinear. If for some reasons that is not possible, the turning circle must be as wide as possible so as not to disrupt the trawl geometry. In all cases the fields "COURSE" and "DISTANCE" of the "TA" data file (see § 5.2 and **Annex X**) should be precisely documented.

2.4.5 Managing the end of shooting operations and the start of the haul

It is important that the gear stays in good contact with the seabed during the whole haul. This should be regularly checked either by an acoustic device during the haul, by the observation of the chains wear and by the observation of benthic organisms in the catches after the haul.

At deeper waters (more than 200 m) some difficulties might be encountered in MEDITS gear setting on the bottom, therefore particular attention must be paid to the shooting operations. In order to decrease the setting time the following recommendations must be considered:

- after the complete shooting of the warps and the winch stopped, a relatively high speed (5-6 knots) should be maintained for around 1 minute, in order to stretch the gear and open the doors;
- the speed should then be strongly reduced (even to 0) allowing the doors to reach the seabed. The time required varies depending on the vessel and the depth; for example 2-3 minutes at 500 m.
- once the doors are on the seabed, a speed lower than the normal one (2.5-2.7 knots) should be maintained in order to allow the net to reach the bottom.
- once the net is well stabilised the speed will be increased towards the standard speed (3 knots); this moment is defined as the real start of the haul.

The above procedure should be respected as precisely as possible, except in some particular

situations where minor adaptations may be absolutely necessary.

For those vessels using a device such as a SCANMAR Trawl Sensor or SIMRAD or other equivalent equipment, the trawl can be considered well stabilised as soon as its vertical opening is between 2 and 3 m.

For the vessels without such a device, preliminary trials shall be made before the survey. The aim of these trials is to determine ship by ship the setting time needed to operate correctly from one vessel to another, taking into consideration the approach of each individual skipper, as well as the best predicting models of the MEDITS behaviour (e.g. horizontal and vertical net openings by warp length).

2.4.6 Trawl geometry while fishing

The trawl is designed to have a vertical opening between 2 and 3 meters at the various depths if the above mentioned adjustments are respected.

When a device like the SCANMAR Trawl Sensor or SIMRAD is used, the vertical and horizontal (between the wings) opening should be checked as often as possible, once the trawl is stabilised. The average values of these two parameters (disregarding the obviously aberrant values) will be reported in the data file for each haul.

When appropriate instruments to control the gear behaviour are not regularly used, reliable models of horizontal and vertical net opening related to some other available parameters (i.e. warp length, depth, etc.) should be used. So that estimated values of net openings can be derived and applied when necessary. Nevertheless the use of these instruments is highly recommended because they give exact information on the gear behaviour. From one side they give the measure of the horizontal and vertical net openings in all the conditions, even when some external and unpredictable effect (i.e. part of the net entangled or damaged, particular types of the bottom) can influence the above parameters and make the possible estimates inaccurate. From the other side, the knowledge of the gear behaviour could improve the setting operations and the determination of the exact tow duration also at high depths.

For each Operative Unit, some specific models of MEDITS gear behavior were produced from the data collected during the project "*Intercalibration des campagnes internationales de chautage démersal en Méditerranée central*" (IRPEM-CE project MED/93/015).

Modelization has also progressed within the MGGP WG, as reported in the Annex 4 - Exercise on the potential impact of different methods to estimate the wing opening on the abundance indices of the Report of the MEDITS Coordination Meeting 2013 held in Heraklion.

During trawl survey, if it will be not possible to use the gear monitoring system due to risky hauls (e.g. rocks, relicts, etc.), such models should be used to interpolate any missing values.

General quantitative predictions of MEDITS gear geometry (e.g. horizontal and vertical openings) from other known parameters (e.g. warp length, bottom depth, bridles length, etc.) can be derived using the approach described in the above mentioned exercise (Annex 4 of the Report of the 2013 MEDITS Coordination Meeting. The new MEDITS Units or Units without any gear monitoring system are recommended to adopt these new general models consistently throughout the years in order to keep eventual errors constant in the time series.

All the Operative Units should follow a common standardization of data-processing of the technological parameters (haul duration, horizontal- and vertical-net opening). The data-process must be consistent throughout the years, keeping eventual errors constant in the time series.

2.4.7 Wear of the trawl

Since no system has been developed to prevent the bosom of the trawl from rubbing against the seabed it is recommended that affected sections of the trawl (in particular the lower net panel) be replaced as needed, particularly when they have lost their initial resistance characteristics.

2.4.8 Checks of the sampling equipment

During use, the trawls must be checked at regular intervals by taking a number of check measurements on the geometry of the trawl.

The net should be regularly checked for wear and tear and all damages shall be repaired upon discovery. The net will eventually stretch under normal fishing conditions. The overall status for the net should be checked at the beginning of every cruise. Every year a detailed check should be made of all net and rope dimensions.

The check guide reported in the Annex XVI can be used.

Special attention should be given to ensure that the relationship (difference) between the length of the netting sections in the top and bottom panels are maintained. Lower sections are of the same length than the top sections. These similar lengths have to be maintained by monitoring the net at regular intervals. In the case that the difference is larger than 1 mesh size the longer section must be shortened to the proper size. Also the relationship between the length of the framing ropes and the nets in the wings and arms must be retained.

The percentage the net is stretched on the headline and footrope is given in the specification (figure 2). When the netting after a period of use loses its stretch, the headline and footrope must be cut off, the net in the wings and arms shortened and remounted on the ropes again.

The trawl consists of four panels: top, bottom and side panels. Each panel has several sections. It is necessary to check the relative length of each netting section. They are all compared with the corresponding sections in the other panels in the way that the top and bottom panel sections are checked against the side panel sections. The best method to compare two sections is to let two persons – one in each end of the section – take around 10 meshes from the centre line of one section in one hand and hold it against 10 meshes from the centre line of the other section in the other hand. The sections must then be stretched and the difference in length observed. Length of side, top and lower panel sections must be equal. The procedure is repeated for each section. In case any difference is detected, a skilled net maker should be consulted to evaluate a possible adjustment.

The length of the groundrope and headline must be compared by holding the two together. The length is adjusted by means of the adjustment chain on the groundrope. The groundrope (40 m) must be 4.30 m longer than the headline (35.70 m).

[3] Treatment of the catches

3.1 Samplings

On board the vessel, the catches are split into the categories and sub-categories as reported in **Annex V** and **XV** of this manual.

For each species the total weight and number of individuals should be collected, excluding the taxonomic category V, G, H for which only the total weight should be collected.

For taxonomic categories D and E the number of individuals is not mandatory.

When the catch of a given species or a fraction of a given species (e.g. juveniles) is too abundant to be measured *in extenso* it is reasonable to take a representative sub-sample of the catch. This sub-sample should be not less than 100 individuals.

The common coding system adopted for the complete set of species (**Annex XV**) is a RUBIN like coding system as defined in the NCC standard¹, even if this international coding system has been no longer maintained for some years. This coding system appears to be a very practical one and it would be very easy in the future to build a correspondence table with any new coding system. In respect to the NCC recommendations and as the MEDITS coding is not strictly identical to the RUBIN one (different use, species not referenced to in the RUBIN code), the "name" of this code has been changed and is for the purpose of the MEDITS called "TM list" (Taxonomic list, formerly FM, i.e. Faunistic list).

The species identifications are made following Fisher *et al.*, 1987^2 . For the fish species not included in this work, the descriptions from Whitehead *et al.*, 1984^3 have been used. Furthermore, a correspondence with the most updated revisions by international bodies (e.g. Fishbase⁴ for fish) is given.

The 2012 review of the species list is based on the checklist of Fauna and Flora of Italian seas. Nevertheless, the species coding is to be strictly kept identical in the data base, even if the scientific species name has been changed, in order to keep the time series consistant.

It is important to precise the extent of species recorded from the catch. Coding for this information is given in **Annex IV**.

Since 2012, the MEDITS reference list of target species (**Annex VI**) includes 82 species, of which 32 are Elasmobranches. The list also includes all species of the *Epinepheus* and *Scomber* genera, for which length measurements should be taken.

For all the 82 species and the two genera mentioned above (*Epinepheus* and *Scomber*) and reported in **Annex VI**, the total number of individuals, the total weight and the individual length should be collected.

This list has been further split in two groups:

- MEDITS G1 includes 41 species with 9 demersal (3 fish, 4 crustaceans and 2 cephalopods) and 32 Selachians. For these species the total number of individuals, the total weight, the individual length and also biological parameters including sex, maturity,

¹ NCC: Nordic code centre (Stockholm).

² Fisher W., M.L., Bauchaud et M. Shneider (rédact.), 1987. Fiches FAO d'identification des espèces pour les besoins de la pêche (révision 1). Méditerranée et mer Noire (volumes I et II). Projet GCP/INT/422/EEC. *FAO*, Rome: 1530 p.

³Whitehead P.J.P., M.L. Bauchot, J.C. Hureau, J. Nielsen, E. Tortonese, 1984. Poissons de l'Atlantique du nord-est et de la Méditerranée (3 volumes). *UNESCO*, Paris.

⁴ Froese R. & D. Pauly eds, 2002. FishBase. World Wide Web electronic publication. www.fishbase.org.

individual weight and age (age has been proposed only for the teleosteans of the Group 1) should be collected;

- MEDITS G2 includes 43 species for which only total number of individuals, total weight and individual length should be collected.

If a live specimen of a rare species or a species subject to conservation measures is caught, efforts should be made to obtain length, weight and sex data and return the specimen back to the sea unharmed, giving it a chance for survival. The specimens should be returned at sea preferably within 4-5 minutes.

3.2 Biological parameters

3.2.1 Measurement units

For fish (Osteichthyes and Elasmobranches) the total length with the tail fully extended should be recorded. The measurement unit is the lower half centimetre. Only for past data (initial years of the survey) measurements at the lower centimetre are allowed.

For crustaceans the cephalo-thoracic length at the lower millimetre should be measured, while for cephalopods, the dorsal mantle length at the lower half centimetre should be obtained. For octopods the measure is taken along the line passing through the eyes.

Sketches of the standard measurements to be obtained are reported in the Annex VII.

If a given team wishes to make complementary observations on other species or of another nature, for its own works, it is kindly invited to inform the MEDITS Group (Co-ordination and Steering Committees) to eventually allow to normalise the methodology with other research teams.

For Octopus species, it has been suggested to measure both dorsal and ventral mantle lengths and to confront them, fitting a linear model to the data so that both measurements can be standardized.

For species which tails are often damaged after catch also it is suggested to take other measures, as body length or disc length or disc width (see **Annex VII**) and then compare measures.

3.2.2 Sex and maturity

The sex is defined following four categories: male, female, undetermined (impossible to determine it by eye) and not determined (the individual has not been examined).

Sex data is presented at individual level in the TE file (**Annex XIIIa**) and at aggregated level in the TC file (**Annex XII**). The latter is necessary for estimating the sex ratio of the target species, given that the sampled individuals in TE are sistematically stratified in the length classes and so cannot be used for sex-ratio estimates.

The sexual maturity is defined using the maturity scales given in the **Annex VIIIa to VIIIe** for fish, crustaceans and cephalopods. **The staging reported in the blue column must be adopted**.

The individuals of hermaphroditic species, undergoing a change in sex when observed, are qualified into the sex showing the more developed gonads.

The former MEDITS scale for the description of elasmobranch maturity stages was referred only to oviparous species (Rayadae and Scyliorhinidae). However the majority of elasmobranchs are viviparous or ovoviparous which have a great diversity in ovarian cycles and gestation periods. The examination of male maturity does not present particular problems, considering that they are classified according to the relative sizes and development of claspers and internal spermiducts. For females it is necessary to apply the dissection of the individual to observe the presence of oocytes and the formation of egg-cases in mature oviparous individuals. For this reason it is better to use a specific scale for the viviparous and ovoviviparous species usually fished in the Mediterranean sea as *Squalus acanthias*, *Squalus brainvillei*, *Etmopterus spinax*, *Torpedo* spp., *Dasyatis* spp. for which the reproductive biology is less investigated in several Mediterranean areas. For these reasons the maturity scale for viviparous elasmobranches adopted at WKMSEL 2010 (ICES, 2010) is reported in the **Annex VIIIc**.

While all maturity stages during the MEDITS survey, should be reported using the MEDITS maturity scales, a conversion of these maturity scales to the scales proposed at the Workshops on Maturity stages is provided in **Annex IX** in case needed.

Reference

ICES. 2010. Report of the Workshop on Sexual Maturity Staging of Elasmobranches (WKMSEL), 11-15 October 2010, Valletta, Malta. ICES CM 2010/ACOM:48. 132 pp.

3.2.3 Otolith, weight and maturity stage at individual level

The MEDITS meeting held in Nantes on 15-17 March 2011 agreed to increase the information recorded during the MEDITS survey, including the monitoring of new biological variables such as the age of bony fish species coded G1 in the new list of target species (**Annex XIV**), and the individual weight of all the species coded G1 in the same list. Data on the Maturity Stages for the same species should also be collected.

Otoliths of routinely assessed species should also be collected for age determination, useful to estimate, *inter alia*, the probability reaction norm of maturation (PRNM) i.e. the indicator n. 4 of Data Collection Framework (Commission Decisions n. 949/2008 and SEC(2008) 449).

The above decisions were also approved by the 8th Regional Coordination Meeting of the Mediterranean and Black Sea held in Ljubljana (Slovenia) on May 10-13, 2011.

The decisions taken during the MEDITS coordination meeting in Ljubljana (March, 6-8, 2012) based on the above mentioned document are reported in **Annex XIV** that represents the sampling protocol to collect the biological information related to otoliths, individual weight and maturity stage by sex from MEDITS survey 2012 and onwards.

Due to these changes, a new file type; the TE file (**Annex XIIIa**), was introduced in order to store individual data. Consequently, new specifications were also introduced in the TC file (**Annex XII**).

It is reccommended that individual weight of *Nephrops norvegicus* is only measured when individuals still have both claws.

If Operative Units would like to collect biological parameters also for species other than G1 species, they are invited to follow the common protocol both for data collection and data storage.

3.3 Other parameters

The bottom water temperature should be recorded at the start and the end of each haul. This information should be stored in the TA exchange file with the format defined in the **Annex X**. Thus the information formerly included in TD file has been incorporated in TA file format.

The former recommended sensor was the Vemco minilog TDR -5 to 35° C, however this sensor is currently out of production. It can be replaced by other devices such as the one produced by Star-Oddi.

The sensor should be fixed on the bosom head line. It is important that the clock of the computer which receives the data from the sensor is exactly set accordingly with the UT time

(GMT) to have the same times as in the TA file. The temperatures from all the hauls (beginning and end) should be kept and reported in the TA file. These temperature data should correspond to the official time of beginning and end of the haul, assuming that the trawl begins and stops to work properly at these official times.

It is reccomended that when a device for recording temperature or other parameters is replaced by a different system a calibration should be accomplished.

Given that the new sensors collect additional parameters besides temperature a column is added to the TA file for salinity (in ppt).

[4] Inter-calibration of the work at sea

Two possibilities are recommended for the inter-calibration of the working methods between the various vessels:

- an exchange of scientists on board the vessels.
- a co-ordinated trawling operation by the two vessels at the border of the areas covered by these two vessels.

To favour the exchange of scientists one place will be reserved on board of each vessel for the eventual boarding of a scientist from another team. In addition, each co-ordination group will do its best to send a scientist from their own team on board to other vessels participating in the project. It is expected that the reports of these boardings help to identify eventual differences in the working methodology.

Where and when different teams are in charge of adjacent working areas, even though rather difficult and time consuming, they are invited to try and organise some common hauls in parallel to reach an inter-calibration between the two vessels.

[5] Data exchange formats

5.1 General information

Standard formats are defined for the storage and to facilitate the exchange of the data produced by the MEDITS surveys. The exchange files are in .csv format, using semicolon as field separator.

5.2 Files type

Five file types are defined in order to store and exchange the data:

Type A: Characteristics of haul (**Annex X**) - this file includes the data on bottom temperature and stratification, formely included in TD and TT type files;

Type B: Catches by haul (Annex XI);

Type C: Length, sex, and maturity at aggregated level (Annex XII);

Type E: Age weight and maturity by length at individual level (Annex XIIIa).

Type L: collection of marine litter data (Annex XIIIb)

The file names are defined as follow:

Position	Variable	Possible values
Character 1-2	Files type	TA (haul characteristics) TB (catch by haul) TC (biological parameters at aggregated level) TE (biological parameters at individual level); TL (litter categories)
Character 3-5	Country	MLT, ESP, FRA, ITA, SVN, HRV, ALB, MON, MOR, ML, GRC, CYP
Character 6-7	GSA	See Annex III
Character 8-11	Year	2000 , 2001 , etc.
Character 12	Separator	. (point)
Character 13-15	Extension	CSV

example TAITA192012.csv

5.3 Files structure and information coding

The exchange files format are described in Annexes X to XIIIa, b.

Complementary coding tables used to fill in the data files are given in the annexes referred above.

[6] Gear standardization and monitoring

At the MEDITS coordination meeting in Ljubljana (Slovenia, March 6-8, 2012), it was decided to include in this manual further technical specifications regarding the sampling gear (e.g. gear parameters, quality checks related to the gear), as well as to establish a multidisciplinary working group to progress in the harmonization of the MEDITS samplings in the Mediterranean Sea.

The ToRs of this WG can be synthesised as follows:

- 1) preparing a clear, commented and documented (e.g. using photos, sketches, etc..) checklist for the quality control of the technical characteristics of the MEDITS gear, in order to avoid the use of a gear that has not exactly the same characteristics from year to year;
- 2) preparing a clear and standard procedure, easy to apply in the field even by non technologists, for the monitoring and collection of the data on the gear performance;
- 3) evaluate and make available tools that enable, using the same methodological approach, the estimate of the parameters of the gear performance.

More detailed Terms of References are reported in the report of the MEDITS coordination meeting held in Ljubljana (Slovenia, 6-8 March 2012).

In this version of the MEDITS Handbook the **Quality periodic/annual control checklist, the Glossary of terms and references to the acronyms and the List of gear metrics** have been introduced (see **Annex XVI**). In addition, progresses regarding the point 3) listed above are included in the report of the MEDITS coordination meeting held in Heraklion (Greece, March 12-14, 2013).

[7] The protocol for monitoring Marine Litter

A common protocol for the voluntary collection of data on Marine Litters, in agreements with the requirements of the Marine Strategy Directive Framework (Directive 2008/56/EC) is reported in the **Annex XVII**.

This protocol was agreed at the MEDITS Coordination Meeting of 2013 (Heraklion, Greece, March 12-14, 2013).

[8] Other aspects (MEDITS Rules)

MEDITS internal rules were adopted during the MEDITS meeting, Split (Croatia), 15-16/06/2010 and reviewed during MEDITS meeting in Malta 13-14.04.2016. MEDITS internal rules are reported in the Annex XVIII.

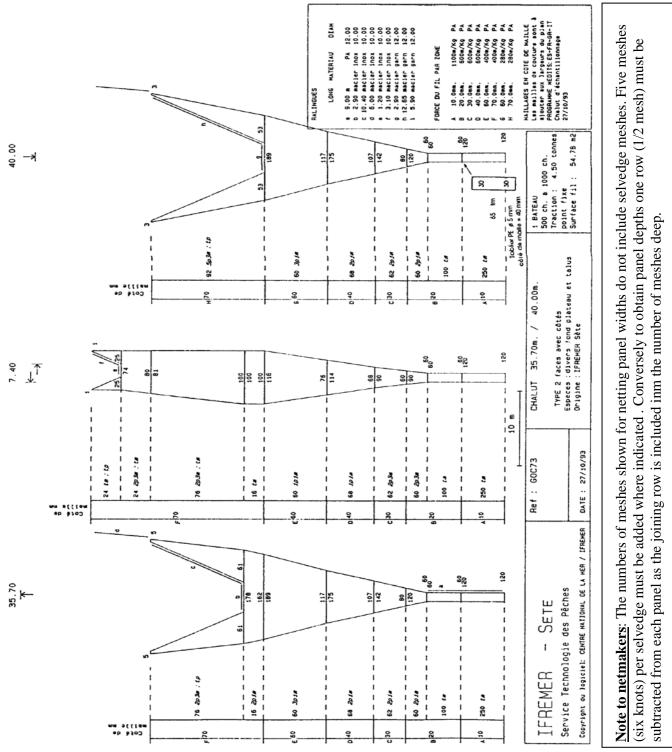


Fig. 2. Design of the GOC 73 trawl used for the MEDITS survey. It is very important to maintain the original relationship (hanging ratio, difference in length) between the netting lengths and the framing ropes along the headline and footrope.

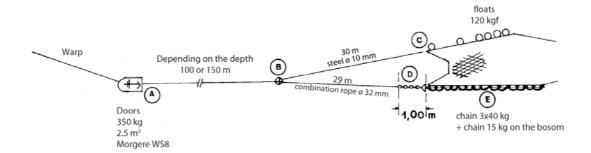


Fig. 3. Gear rigging details adopted for the MEDITS trawl. For the letter A, B, C, D and E refer to Figure 4.The length of the 1 m chain (D) must be adjusted in order to obtain the upper- (steel) and the lower-bridle (combination rope + chain) of the same length (30 m). See Figure 4 for further details.

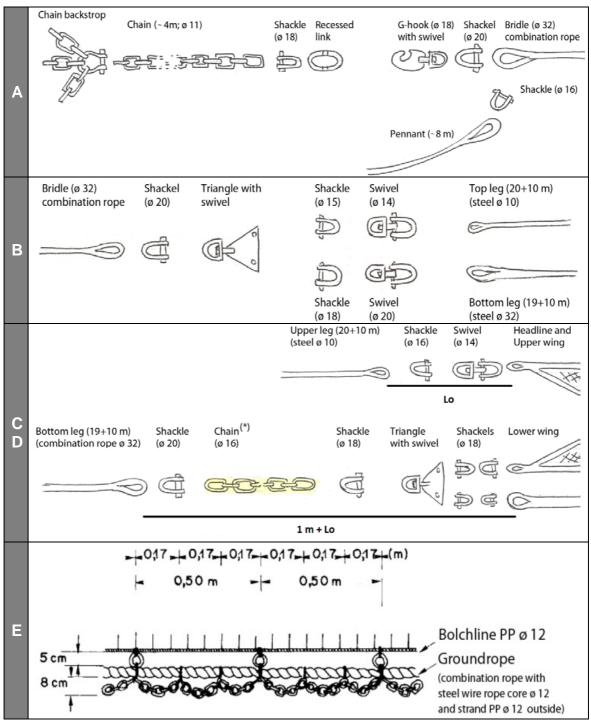
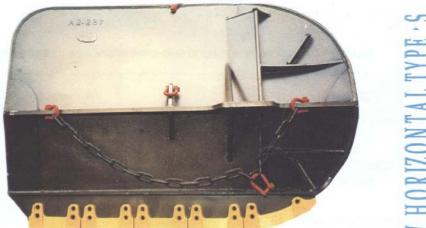



Fig. 4. Various details of the MEDITS trawl gear rigging. The length of the chain (*) must be adjusted in order to obtain the upper- (steel) and the lower-bridle (combination rope + chain) of the same length (30 m). The ballast chain must be rigged at the tip of the lower-bridle.

The otterboard WH can be equipped with chain or with fixed bracket. In the back side, the otterboard can be equipped with 2 or 3 chains backstrop.

TYPE	DIMENSIONS	SURFACE M2	WEIGHT KG	TYPE	DIMENSIONS	SURFACE M2	POIDS KG
WS 0	1 050 X 750	0.70	60-100	WS 14	2 650 X 1 700	4.34	1000 - 1200
WS 1	1 300 X 850	1.00	100- 130	WS 15	1 750 X 1 750	4.62	1 150 - 1 300
WS 2	1 500 X 900	1.12	110- 150	WS 16	2 800 X 1 800	4.90	1250-1350
WS 3	1 600 X 1 000	1.36	150 - 180	WS 17	2 900 X 1 900	5.20	1300-1400
WS 4	1 700 X 1 050	1.62	200-240	WS 18	3 050 X 2 000	5.70	1400-1600
WS 5	1 750 X 1 100	1.74	230 - 280	WS19	3 200 X 2 100	6.10	1500-1700
WS 6	1 900 X 1 150	1.96	250 - 300	WS 20	3 400 X 2 200	6,60	1700-1900
WS 7	2 000 X 1 200	2.23	320 - 350	WS 21	3 500 X 2 300	7.30	1 900 - 2 100
WS 8	2 050 X 1 250	2.46	350 - 400	WS 22	3 600 X 2 400	7.58	2 000 - 2 300
WS 9	2 150 X 1 300	2.62	380 - 500	WS 23	3 750 X 2 500	8.82	2 300 - 2 700
WS 10	2 300 X 1 350	2.82	500 - 700	WS 24	4 000 X 2 700	9.31	2 300 - 3 000
WS 11	2 400 X 1 400	2.93	600 - 700	WS 25	4 300 X 2 900	11.10	2 500 - 4 000
WS 12	2 500 X 1 500	3.30	750 - 900	WS 26	4 600 X 3 200	13.00	3000-5000
WS 13	2 600 X 1 600	3.70	900-1000	WS 27	5 000 X 3 500	15.80	4000-6000

Fig. 5. Main characteristics of the Morgere W Horizontal (WH) otterboards. For the MEDITS program it was selected the WS8 type. The otterboard weight refers to without- and withplates in the shoe.

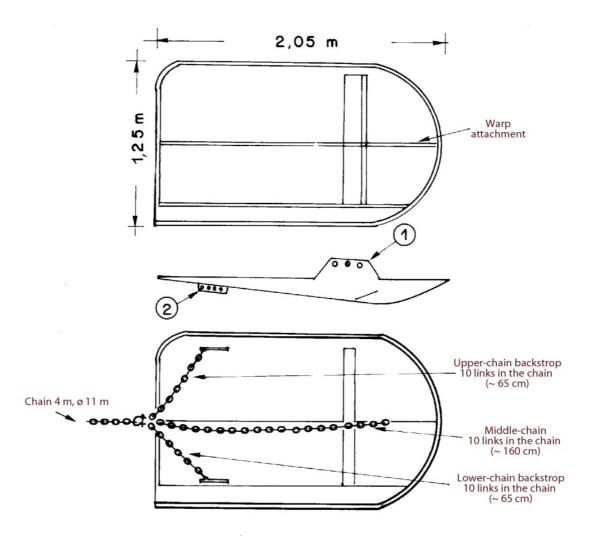
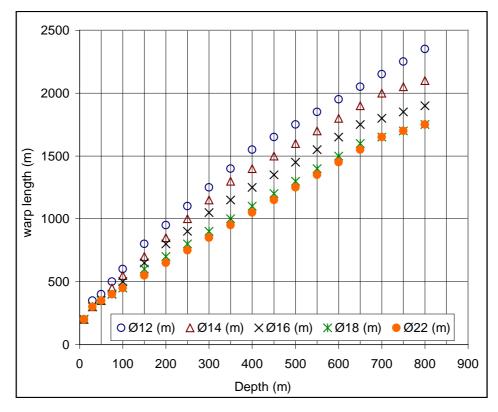



Fig. 6. Morgere WS8 (350 kg; 2.5 m^2). The lengths of the backstrop chains are indicated without the shackles. The warp is shackled in the fore hole of the bracket sheet (see arrow 1). The short parts of the external crowfoot are shackled in the most back part of the backside sheets, upper and lower (see arrow 2).

Relationship between depth (m) and warp length (m) at different warp length diameter (mm)

Depth	Ø12	Ø14	Ø16	Ø18	Ø22
(<i>m</i>)	(m)	(m)	(m)	(m)	(m)
10	200	200	200	200	200
30	350	300	300	300	300
50	400	350	350	350	350
75	500	450	400	400	400
100	600	550	500	450	450
150	800	700	650	600	550
200	950	850	800	700	650
250	1100	1000	900	800	750
300	1250	1150	1050	900	850
350	1400	1300	1150	1000	950
400	1550	1400	1250	1100	1050
450	1650	1500	1350	1200	1150
500	1750	1600	1450	1300	1250
550	1850	1700	1550	1400	1350
600	1950	1800	1650	1500	1450
650	2050	1900	1750	1600	1550
700	2150	2000	1800	1650	1650
750	2250	2050	1850	1700	1700
800	2350	2100	1900	1750	1750

Fig. 7. Relationship between depth and warp length for the trawl GOC 73.

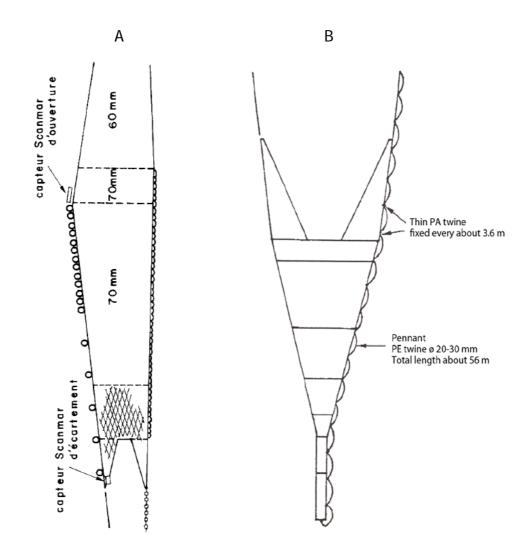


Fig. 8. A. Position of the geometry sensors. B. Details of the pennant adopted for the MEDITS trawl. The pennant must be fixed both at the wing tip and at the codend closure. The pennant must be sewed every 3.6 m at the starboard strengthening lacing.

[9] Annexes

I. Code of countries, vessels and gear

II. Stratification scheme

III. Target number of hauls by area

IV. Code of recorded species, of general observations on hauls and of quadrants

V. Code of faunistic categories. Form to introduce new species

VI. List of reference species

VII. Standard length measurement for Crustaceans, Cephalopods bony fish and Elasmobranches

VIII. Codes of sexual maturity for Fish, Crustaceans and Cephalopods

IX. Protocol for Conversion of maturity scales from the scales proposed at the Workshops on Maturity stages and the MEDITS scales

X. Format of the type A files (Data on hauls)

XI. Format of the type B files (Catches by haul)

XII. Format of the type C files (Length, sex and maturity at aggregated level)

XIIIa. Format of the type E files (Age, weight and maturity by length at individual level)

XIIIb. Format of the type L files (Litter Categories)

XIV. Protocol for sampling otoliths, individual weight and maturity stage of MEDITS target species

XV. TM list of species codes

XVI. Technical specifications and quality check of the Medits gear

XVII. Protocol for monitoring Marine Litter on a voluntary basis

XVIII. Internal rules of the MEDITS group

I. Codes for countries, vessels and gear

Codes for countries (Position 3-5 in the file A)

Code	Country
ALB	Albania
СҮР	Cyprus
ESP	Spain
FRA	France
GRC	Greece
HRV	Croatia
ITA	Italy
MLT	Malta
MOR	Morocco
MON	Montenegro
SVN	Slovenia

Vessel codes and characteristics	(Vessel code:	Position 8-10 in the file A)
vesser codes and characteristics	() 00001 0040	

Vessel code	Vessel Name	Туре	Length (m)	Tonnage (TJB)	Year	Material	Power (kW)	Warp diam (mm)	Warp length (m)
AND	Andrea	R	29.5	211	1998	aluminium	1300	14	2250
BIM	Bianca Maria	Р	26.81	116	1988	wood	485	12	3000
BIO	BIOS DVA	R	36.3	336	2009	steel	895	14	1500
CHA	Charif Alidrissi	R	41	397	1986	steel	808	22	3000
COR	Cornide de Saavedra	R	66.7	1524	1970	steel	1651	29	2700
MOL	Miguel Oliver*	R	70	2495	2014	steel	2x1000	20	4000
DAP	Dalla Porta	R	35.3	285	2000	steel	809	14	2500
DEG	Degre	Р	23.95	106.46	1996	steel	538	14	3100
DEM	Demetrios	Р	27.77	78.24	1991	steel	537	12	3000
EGU	Elisa Guidotti	Р	29	69	1991	bois	330	14	2500
EVA	Evagelistria	Р	29.1	59.45	2000	steel	497	12	1800
FRP	Francesco Padre	Р	25	88	1984	steel	660	14	3000
FUL	Fulmine	Р	29	147.2	0	wood	736	14	2500
GAB	Gabriella	Р	23	64	1970	wood	441	12	3500
GIS	Gisella	Р	29.3	168	1999	iron	432	15	3000
IGO	Igor	Р	22.5	102	1979	iron	345	14	2500
IRO	Ioannis Rossos	Р	26.3	115.75	1986	iron	368	12	3000
LEU	L'Europe	R	29.6	259.69	1993	aluminium	690	16	2700
LIB	Libera	Р	22.3	69	1987	wood	441	14	2500
MEG	Megalochari	Р	33	150	2005	steel	367	12	2000
NAU	Nautilos	Р	28.4	138	1991	iron	600	14	2500
NAV	Francisco Paula Navarro	R	30.5	178	1987	wood	750	18	2200
NUS	Nuovo Splendore	Р	29.45	134.51	1967	wood	685	16	2450
PAR	Kapetan Paraschos	Р	26.1	85.71	1989	wood	386	12	2000
PEC	Pasquale e Cristina	Р	33.06	158.77	1996	wood	923	16	2500
PRI	Principessa I	Р	32	165	1995	steel	403	14	2500
ROS	Roselys	R	0	0	0	wood	0	0	0
SAN	Sant'Anna	Р	32.2	97.06	1981	steel	1357	14	3100
TAM	Takis-Mimis	Р	28.97	161.70	2002	steel	367	12	2500
del			/. //			1 /1		C'	

*http://www.magrama.gob.es/es/pesca/temas/buques-secretaria-general-pesca/buque-oceanografico-miguel-oliver/default.aspx

Codes for the gear (MEDITS code: Position 11-23 in the file A)

Nature	Gear	MEDITS code	Comments
Trawl	Large opening and 4 faces	GOC73	Standard for all vessels
Rigging	With legs	GC73	Standard for all vessels
Doors	Morgère WH S8	WHS8	Standard for all vessels

II. Stratification scheme (by stratum number) (Stratum: Position 125-129 in the file A)

GSA	Country	Stratum	Depth (m)	Surface (km ²)	Area
1	Spain	11101 a		510	Alboran Sea
1	Spain	11102 a		1951	
1	Spain	11103 a		1086	
1	Spain	11104 a		3461	
1	Spain	11105 a		4912	
2	Spain	11106 b		0	Alboran Island
2	Spain	11107 b		130	Alboran Island
2	Spain	11108 b		132	
2	Spain	11109 b		221	
2	Spain	11110 a		350	
3	Morocco	11401 a		355	West Morocco
3	Morocco	11402 a		444	
3	Morocco	11403 a		487	
3	Morocco	11404 a		3580	
3	Morocco	11405 a		1108	
3	Morocco	11406 b		878	East Morocco
3	Morocco	11407 b		1098	Lust Horocco
3	Morocco	11408 b		938	
3	Morocco	11400 b		3507	
3	Morocco	11409 b		1446	
5	Spain	11501 a		0	West Baleares
5	Spain	11501 a		1170	West Baleares
5	Spain	11502 a		1773	West Bulcules
5	Spain	11505 a		1123	
5	Spain	11505 a		2030	
5	Spain	11505 a		2050	East Baleares
5	Spain	11507 b		1472	Last Dalcares
5	Spain	11508 b		1518	
5	Spain	11510 b		1315	
6	Spain	11201 a		1130	Valenciana
6	Spain	11201 a		4095	valenelana
6	Spain	11202 a		3302	
6	Spain	11203 a		4242	
6	Spain	11204 a		3159	
6	Spain	11205 a		1896	Tramontana
6	Spain	11301 a		7219	Tranontana
6	Spain			3587	
6	Spain			2477	
6	Spain	11304 a 11305 a		1399	
7	France	11303 a 12101 a		1399	West Gulf of Lions
7	France	12101 a		3911	mest Guil of Lions
7	France	10100	100 000	819	
7	France	10104	200 500	709	
7	France			660	
7	France	12105 a 12106 b		696	East Gulf of Lions
7	France			2610	Last Outi Of LIOUS
7	France			1734	
7				653	
7	France	12109 b 12110 b		586	
8	France		10 -		North East Corsica
8	France France	13101 a 13102 a		0 521	North East Corsica
8			100 000	234	NOTHI East COISICA
8	France France	13103 a 13104 a		234 920	
8 8	France			920 867	
0	Tance	13105 a	500-600	007	

GSA	Country	Country Stratum		Depth (m)	Surface (km ²)	Area
8	France	13106	b	10-50	0	South East Corsica
8	France	13107	b	50-100	524	South East Corsica
8	France	13108	b	100-200	153	
8	France	13109	b	200-500	383	
8	France	13110	b	500-800	960	
9	Italy	13201	a	10-50	657	North Ligurian Sea
9	Italy	13202	a	50-100	729	i tortir Eigurian bea
9	Italy	13202	a	100-200	658	
9	Italy	13203	a	200-500	1737	
9	Italy	13205	a	500-800	2093	
9	Italy	13205	b	10-50	2053	East Ligurian Sea
9	Italy	13200	b	50-100	1598	Last Eigenan See
9	Italy	13207	b	100-200	3186	
9	Italy	13208	b	200-500	2449	
9	Italy	13210	b	500-800	879	
9	Italy	13210	c	10-50	945	North Tyrrhenian Sea
9	Italy	13211	c	50-100	1506	North Tyrnenian Sea
9	Italy	13212		100-200	2732	
9	Italy	13213	c	200-500	2828	
9	Italy	13214	c	500-800	3071	
9	Italy	13213	c d	10-50	2107	Control Turrhonian Soo
9	Italy	13210	d d		2107 2159	Central Tyrrhenian Sea
9				50-100		
9 9	Italy	13218	d	100-200	4302	
9	Italy	13219	d	200-500	3573	
	Italy	13220	d	500-800	3148	South Foot Tomb mine Sou
10	Italy	13401	a	10-50	1194	South East Tyrrhenian Sea
10	Italy	13402	a	50-100	1224	
10	Italy	13403	а	100-200	2095	
10	Italy	13404	a	200-500	3238	
10	Italy	13405	a L	500-800	5248	Couth Word Townhaming Con
10	Italy	13406	b	10-50	622	South West Tyrrhenian Sea
10	Italy	13407	b	50-100	1003	
10	Italy	13408	b	100-200	1224	
10	Italy	13409	b	200-500	1966	
10	Italy	13410	b	500-800	2441	Sauth Frat Saudinia
11	Italy	13301 13302	a	10-50	822	South East Sardinia
11	Italy		a	50-100	382	
11	Italy	13303	a	100-200	351	
11	Italy	13304	a	200-500	589	
11	Italy	13305	a h	500-800	502	North Fost Soudini-
11	Italy	13306	b	10-50	910 1502	North East Sardinia
11	Italy	13307	b	50-100	1592	
11	Italy	13308	b	100-200	839	
11	Italy	13309	b	200-500	765	
11	Italy	13310	b	500-800	855	
11	Italy	13311	с	10-50	627 706	North Sardinia
11	Italy	13312	с	50-100	796	
11	Italy	13313	с	100-200	512	
11	Italy	13314	с	200-500	500	
11	Italy	13315	с	500-800	242	
11	Italy	13316	d	10-50	431	North West Sardinia
11	Italy	13317	d	50-100	541	
11	Italy	13318	d	100-200	896	
11	Italy	13319	d	200-500	471	
11	Italy	13320	d	500-800	335	
11	Italy	13321	e	10-50	1096	West Sardinia
11	Italy	13322	e	50-100	446	

GSA	Country	Stratu	m	Depth (m)	Surface (km ²)	Area
11	Italy	13323	e	100-200	927	
11	Italy	13324	e	200-500	412	
11	Italy	13325	e	500-800	260	
11	Italy	13326	f	10-50	783	South West Sardinia
11	Italy	13327	f	50-100	987	
11	Italy	13328	f	100-200	2335	
11	Italy	13329	f	200-500	1620	
11	Italy	13330	f	500-800	1041	
11	Italy	13331	g	10-50	705	South Sardinia
11	Italy	13332	в g	50-100	350	2000 Dalama
11	Italy	13333	g	100-200	768	
11	Italy	13334	g	200-500	1060	
11	Italy	13335	ь g	500-800	1227	
15	Malta	13501	a	10-50	152	Malta
15	Malta	13502	a	50-100	1473	Ivialta
15	Malta	13502	a	100-200	3076	
15	Malta	13503		200-500	3353	
15	Malta	13504	a a	200-300 500-800	2526	
			a			Strait of Sigily
16	Italy	13411	c	10-50	3145	Strait of Sicily
16	Italy	13412	с	50-100	6610	
16	Italy	13413	с	100-200	9866	
16	Italy	13414	с	200-500	13424	
16	Italy	13415	с	500-800	15653	
17	Italy	21101	а	10-50	17300	North Adriatic Sea
17	Italy	21102	а	50-100	8200	
17	Italy	21103	а	100-200	0	
17	Italy	21104	а	200-500	0	
17	Italy	21105	a	500-800	0	
17	Italy	21106	b	10-50	4700	Central Adriatic Sea
17	Italy	21107	b	50-100	10350	
17	Italy	21108	b	100-200	14950	
17	Italy	21109	b	200-500	3900	
17	Italy	21110	b	500-800	950	
17	Slovenia	21111	с	10-50	184	North Adriatic-Slovenia
17	Slovenia	21112	с	50-100	0	
17	Slovenia	21113	с	100-200	0	
17	Slovenia	21114	с	200-500	0	
17	Slovenia	21115	с	500-800	0	
17	Croatia	21116	d	10-50	7308	North East Adriatic-Croatia
17	Croatia	21117	d	50-100	14785	
17	Croatia	21118	d	100-200	7225	
17	Croatia	21119	d	200-500	2409	
17	Croatia	21120	d	500-800	0	
18	Italy	22121	e	10-50	261	South West Adriatic Sea
18	Italy	22122	e	50-100	509	
18	Italy	22123	e	100-200	1348	
18	Italy	22124	e	200-500	332	
18	Italy	22125	e	500-800	860	
18	Italy	22126	f	10-50	329	South West Adriatic Sea
18	Italy	22127	f	50-100	599	
18	Italy	22128	f	100-200	1809	
18	Italy	22129	f	200-500	472	
18	Italy	2212)	f	500-800	350	
18	Italy	22130	g	10-50	290	South West Adriatic Sea
18	Italy	22131	ь g	50-100	689	
18	Italy	22132	g g	100-200	1214	
18	Italy	22133	g	200-500	260	
10	itury	22134	5	200-300	200	

GSA	Country	Stratu	m	Depth (m)	Surface (km ²)	Area
18	Italy	22135	g	500-800	336	
18	Italy	22136	ĥ	10-50	1702	South West Adriatic Sea
18	Italy	22137	h	50-100	1307	
18	Italy	22138	h	100-200	1407	
18	Italy	22139	h	200-500	707	
18	Italy	22140	h	500-800	492	
18	Albania	22141	i	10-50	568	South East Adriatic-Albania
18	Albania	22142	i	50-100	2231	
18	Albania	22143	i	100-200	2186	
18	Albania	22143	i	200-500	1840	
18	Albania	22144	i	500-800	1910	
18	Montenegro	22145	j	10-50	280	South Adriatic-Montenegro
18	Montenegro	22140		50-100	1100	South Adriate-Montenegro
18	Montenegro	22147	j	100-200	1700	
	-		j			
18	Montenegro	22149	j	200-500	1150	
18	Montenegro	22150	j	500-800	770	
19	Italy	22101	a	10-50	412	North-Western Ionian Sea (East Sicily)
19	Italy	22102	а	50-100	377	
19	Italy	22103	а	100-200	334	
19	Italy	22104	а	200-500	650	
19	Italy	22105	а	500-800	641	
19	Italy	22106	b	10-50	326	North-Western Ionian Sea (South Calabria)
19	Italy	22107	b	50-100	225	
19	Italy	22108	b	100-200	257	
19	Italy	22109	b	200-500	939	
19	Italy	22110	b	500-800	1370	
19	Italy	22111	с	10-50	599	North-Western Ionian Sea (North Calabria)
19	Italy	22112	с	50-100	321	
19	Italy	22113	с	100-200	393	
19	Italy	22114	с	200-500	1327	
19	Italy	22115	с	500-800	1190	
19	Italy	22116	d	10-50	787	North-Western Ionian Sea (Apulia)
19	Italy	22117	d	50-100	778	
19	Italy	22118	d	100-200	1680	
19	Italy	22119	d	200-500	1439	
19	Italy	22120	d	500-800	2302	
20	Greece	22201	а	10-50	2916	East Ionian Sea
20	Greece	22202	a	50-100	4365	
20	Greece	22203	a	100-200	2536	
20	Greece	22204	a	200-500	3158	
20	Greece	22205	a	500-800	3848	
20	Greece	22301	a	10-50	2467	Argosaronikos
22	Greece	22301	a a	50-100	587	1 Postionikos
22	Greece	22302 22303	a a	100-200	7143	
22	Greece	22303 22304		200-500	6074	
22	Greece	22304 22305	a	200-300 500-800	8645	
22 22			a	10-50	8645 8645	North Aggaan Saa
22	Greece	22401	a		8043 8489	North Aegean Sea
	Greece	22402	a	50-100		
22	Greece	22403	a	100-200	15823	
22	Greece	22404	а	200-500	19774	
22	Greece	22405	а	500-800	15426	
22	Greece	22501	а	10-50	4206	South Aegean Sea
22	Greece	22502	а	50-100	3436	
22	Greece	22503	a	100-200	12407	
22	Greece	22504	а	200-500	15630	
22	Greece	22505	а	500-800	19579	
23	Greece	22506	а	10-50	712	Crete (Cretan Sea)
23	Greece	22507	а	50-100	654	
23	Greece	22508	a	100-200	862	
23	Greece	22509	а	200-500	2470	
	C	22510	а	500-800	2645	
23	Greece	22510	u	200 000	2015	

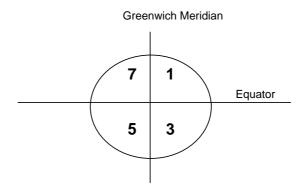
25	Cyprus	32102	а	50-100	717
25	Cyprus	32103	a	100-200	918
25	Cyprus	32104	а	200-500	2245
25	Cyprus	32105	a	500-800	6430

Country	GSA	Strata	Surface (km ²)	No Hauls	Area
Spain	1, 2	111	12753	35	Northern Alboran Sea
Morocco	3	114	13841		Southern Alboran Sea
Spain	5	115	12656	53	Balearic Islands
Spain	6	112-113	32506	82	Northern Spain
France	7,8	121, 131	18422	88	Gulf of Lions & Corsica*
Italy	9	132	42410	120	Ligurian, North and Central Tyrrhenian
					Sea
Italy	10	134a-b	20255	70	Central and Southern Tyrrhenian Sea
Italy	11	133	26975	101	Sardinia
Malta	15	135	10580	44	Malta
Italy	16	134c	48698	120	Strait of Sicily
Italy	17	211a-b	60350	120	Northern Adriatic Sea
Slovenia	17	211c	184	2	Northern Adriatic Sea
Croatia	17	211d	31727	60	Northern Adriatic Sea
Italy	18	221e-h	15273	53	Southern Adriatic Sea
Albania	18	221i	8735	27	Southern Adriatic Sea
Montenegro	18	221j	5000	10	Southern Adriatic Sea
Italy	19	221a-d	16347	70	North-Western Ionian Sea
Greece	20	222	16823	36	Eastern Ionian Sea
Greece	22	223	24916	23	Aegean Sea (Argosaronikos)
Greece	22	224	68157	65	Aegean Sea (North)
Greece	22	225	62601	40	Aegean Sea (South)
Greece	23	225	7343	20	Cretan Sea
Cyprus	25	321	11106	26	Cyprus

III. Target number of hauls by area (based on 2002 onwards records)

*23 hauls in GSA8 and 65 in GSA7

IV. Codes for recorded species, of the observations on hauls and of quadrants


Codes of recorded species (Position 85 in the file A)

MEDITS code	Nature	Comments
0	No standard species recorded	
1	Only the species of the reference list are recorded	See Annex VI
2	The species of the reference list plus some others are recorded	
3	All the caught species are recorded	See Annex XV
4	Species from a national list	

Coding of the observations (Position 112 in the file A)

MEDITS code	Nature	Comments
0	No problem	
1	Slight plugging of the net	
2	Heavy plugging of the net	
3	High abundance of jellyfish	
4	High abundance of plants in the net	
5	Tears of the net	
6	High abundance of benthos	
7		
8		
9	Other	

Coding of the quadrants (Positions 41 and 63 in the file A)

V. Codes of Taxonomic categories. Form to introduce new species codes

Codes of taxonomic categories (Position 24 in the file B)

MEDITS code	Nature	Years of			
		use/introduction			
А	Fish	1994-2011			
Aa	Fish Agnatha	2014÷			
Ae	Fish Chondrichthyes	2012÷			
Ao	Fish Osteichthyes	2012÷			
В	Crustaceans (Decapoda)	1994-2014			
Bam	Amphipoda	2012÷			
Bci	Cirripeda	2012÷			
Beu	Euphausiacea	2012÷			
Bis	Isopoda	2012÷			
Bst	Stomatopoda	2012÷			
С	Cephalopods	1994-2012÷			
D	Other commercial (edible) species	1994-2011			
Dec	Echinodermata	2012÷			
Dmb	Mollusca Bivalvia	2012÷			
Dmg	Mollusca Gastropoda	2012÷			
Dmo	Mollusca Opistobranchia	2012÷2014			
Dtu	Tunicata (Ascidiacea)	2012÷			
Е	Other animal species but not commercial (not edible)	1994-2011			
Ean	Annellida	2014÷			
Eba	Brachiopoda	2012÷			
Ebr	Bryozoa	2012÷			
Ech	Echiura	2014÷			
Ecn	Cnidaria	2012÷			
Ect	Ctenophora	2012÷			
Eec	Echinodermata	2012÷			
Ehi	Hirudinea	2012÷			
Emb	Mollusca Bivalvia	2012÷			
Emg	Mollusca Gastropoda	2012÷			
Emo	Mollusca Opistobranchia	2012÷			
Emp	Mollusca Polyplacophora	2014÷			
Ene	Nemertea	2014÷			
Еро	Polychaeta	2012÷			
Epr	Priapulida	2014÷			
Esi	Sipuncula	2012÷			
Esc	Scaphopoda	2012÷			
Esp	Porifera (Sponges)	2012÷			
Etu	Tunicata (Ascidiacea)	2012÷			
G	portions or products of animal species (shell debris, eggs	2012÷			
0	of gastropods, selachians, etc.)	2012.			
Н	portions or products of vegetal species (e.g. leaves of sea	2012÷			
	grasses, of terrestrial plants, etc.)	2012.			
М	Mammalia (mammals)	2014÷			
0	Aves (birds)	2014÷ 2014÷			
R	Reptilia (Turtles)	2014÷ 2014÷			
K V	Plantae (vegetals)	2014 . 2012÷			
V	r laillat (vegetais)	2012-			

Form to introduce new species codes

Name of scientist: Date: GSA:										
Proposed Code		Scientific name	Reference for scientific	Geographical	Stratum					
Genus	Species		name description	position						

Sheet to be send to:

prof. Giulio Relini Centro di Biologia Marina del Mar Ligure Dip.Te.Ris.<u>biolmar@unige.it</u>

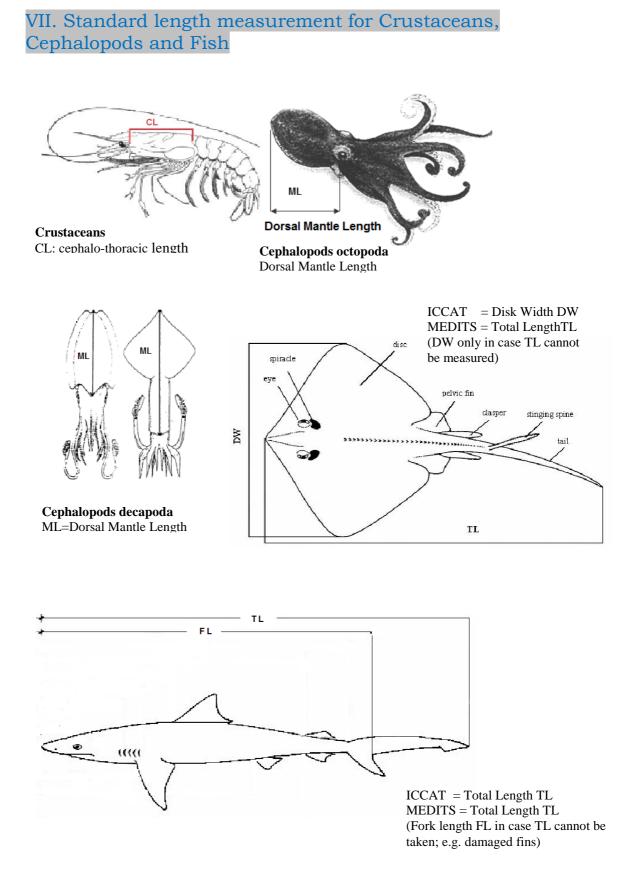
VI. List of the reference species

The MEDITS reference list (since 2012) includes 82 species, of which 32 are Elasmobranches. The list also includes all species of the *Epinepheus* and *Scomber* genera.

For all the 82 species and all species of the *Epinepheus* and *Scomber* genera, the total number of individuals, the total weight and the individual length should be collected.

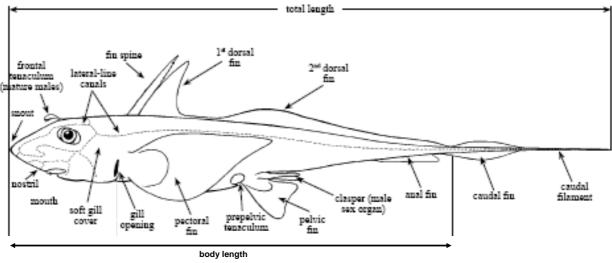
This list is further split in two groups:

- MEDITS G1 includes 41 species with 9 demersal (3 fish, 4 crustaceans and 2 cephalopods) and 32 Selachians. For these species the total number of individuals, the total weight, the individual length, and also biological parameters including sex, maturity, individual weight and age (age has been proposed only for the teleosteans of the Group 1) should be collected;
- MEDITS G2 includes 42 species for which only total number of individuals, total weight and individual length and should be collected.

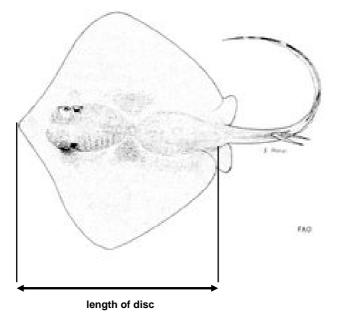

The new list of reference species (Tot. No=total number of individuals in the haul; Tot. W= total weight of the individuals in the haul; the number 1 in the column MEDITS G1 and MEDITS G2 indicates that the species has been selected for some measurements; the column date indicates when the species has been introduced in the list of target species, the symbol > followed by the year indicates that the species was excluded by the list in that year)

No	Medit LIST proposal 2011	Species group DCF	MEDITS G1	MEDITS G2	Group	Old MEDITS list	Tot. No	Tot. W	Ind. Length	Sex	Mat. stage	Age	Ind. weight	Date	CODE	English common name
	Teleosteans															
1	Aspitrigla cuculus	G3		1	Fish	1	х	Х	Х					1998	ASPI CUC	Red gurnard
2	Boops boops	G2		1	Fish	1	х	х	х					2006	BOOPBOO	Bogue
3	Citharus linguatula	G3		1	Fish	1	х	х	Х					1994	CITH MAC	Spotted flounder
4	Diplodus annularis	G3		1	Fish		Х	х	Х					2012	DIPLANN	Annular seabream
5	Diplodus puntazzo	G3		1	Fish		Х	х	Х					2012	DIPLPUN	Sharpsnout seabream
6	Diplodus sargus	G3		1	Fish		х	Х	Х					2012	DIPLSAR	White sea bream
7	Diplodus vulgaris	G3		1	Fish		х	Х	х					2012	DIPLVUL	Common two- banded seabream

8 9	Engraulis encrasicolus Epinephelus spp.*	G1 G3		1	Fish Fish		X X	X X	x x					2012 2012	ENGRENC EPINSPP	Anchovy Grouper
10	Eutrigla gurnardus	G2		1	Fish	1	X	X	X					1994	EUTR GUR	Grey gurnard
11	Helicolenus dactylopterus	G2 G3		1	Fish	1	X	X	X					1994	HELI DAC	Rockfish
12	Lepidorhombus boscii	G3		1	Fish	1	X	X	X					1994	LEPM BOS	Four-spotted
12	Leptuomonous oosen	05		1	1 1511	1	Α	А	А					1774	LEI M DOD	megrim
13	Lithognathus mormyrus	G3		1	Fish		х	х	х					2012	LITH MOR	Striped
																seabream
14	Lophius budegassa	G2		1	Fish	1	Х	Х	х					1994	LOPH BUD	Black-bellied
																angler
15	Lophius piscatorius	G2		1	Fish	1	Х	Х	Х					1994	LOPH PIS	Angler
16	Merluccius merluccius	G1	1		Fish	1	Х	Х	х	х	х	Х	х	1994	MERL	European
		GA			E . 1									1004	MER	hake
17	Micromesistius poutassou	G2		1	Fish	1	Х	Х	Х					1994	MICM POU	Blue whiting
18	Mullus barbatus	G1	1		Fish	1	х	X	X	X	X	х	X	1994	MULL BAR	Red mullet
19	Mullus surmuletus	G1	1		Fish	1	Х	X	Х	X	X	Х	X	1994	MULL SUR	Striped red mullet
20	Pagellus acarne	G3		1	Fish	1	х	х	х					1994	PAGE ACA	Axillary
20	1 ugenus acume	05		1	1/1811	1	А	А	А					1774	TAOLACA	seabream
21	Pagellus bogaraveo	G3		1	Fish	1	х	х	х					1994	PAGE BOG	Blackspot
21	Tugenus boguruveo	05		1	1 1511	1	л	л	л					1774	THOL DOG	seabream
22	Pagellus erythrinus	G2		1	Fish	1	х	х	х					1994	PAGE ERY	Common
				-		-										pandora
23	Pagrus pagrus	G3		1	Fish		х	х	х					>	SPAR PAG	Common
														1996		seabream
24	Phycis blennoides	G3		1	Fish	1	х	х	х					1994	PHYI BLE	Greater
	-															forkbeard
25	Polyprion americanus	G3		1	Fish		Х	х	х					2012	POLY AME	Wreckfish
26	Psetta maxima	G2		1	Fish		Х	Х	х					2012	PSET MAX	Turbot
27	Sardina pilchardus	G1		1	Fish		Х	Х	Х					2012	SARD PIL	Sardine
28	Scomber spp.*	G2		1	Fish		Х	Х	Х					2012	SCOM SPP	mackerel
29	Solea vulgaris	G1		1	Fish	1	Х	Х	Х					1994	SOLE VUL	Common sole
30	Spicara flexuosa	G3		1	Fish	1	Х	Х	Х					1994	SPIC FLE	Picarel
31	Spicara maena	G3		1	Fish		Х	Х	Х					2012	SPIC MAE	Blotched
		~ ~														picarel
32	Spicara smaris	G2		1	Fish	1	Х	Х	Х					1998	SPIC SMA	Picarel
33	Trachurus mediterraneus	G2		1	Fish	1	х	Х	х					1994	TRAC MED	Mediterranean
																horse
24	T 1 . 1	C 2		1	E' 1	1								1004		mackerel
34	Trachurus trachurus	G2		1	Fish	1	Х	Х	х					1994	TRAC TRA	Atlantic horse
25	Trialalusame	C		1	D:-1-	1								2000	TDICLUC	mackerel
35	Trigla lucerna	G2		1	Fish	1	х	х	х					2006	TRIGLUC	Tub gurnard


36	Trigloporus lastoviza	G3		1	Fish	1	х	х	х				1998	TRIP LAS	Streaked gurnard
37	Trisopterus minutus capelanus	G3		1	Fish	1	х	х	Х				1994	TRIS CAP	Poor-cod
38	Zeus faber	G3		1	Fish	1	х	х	х				1994	ZEUS FAB	John dory
	Elasmobranches														
39	Centrophorus granulosus	G1	1		Elasmob		Х	х	Х	Х	Х	х	2012	CENT GRA	Gulper shark
40	Dalatias licha	G1	1		Elasmob		х	х	х	х	х	х	2012	SCYM LIC	Kitefin shark
41	Dipturus batis	G1	1		Elasmob		х	х	х	х	Х	х	2012	RAJA BAT	Skate
42	Dipturus oxyrinchus	G1	1		Elasmob		х	х	х	Х	Х	Х	2012	RAJA OXY	Longnosed skate
43	Etmopterus spinax	G1	1		Elasmob		х	х	х	х	Х	х	2012	ETMO SPI	Velvet belly
44	Galeorhinus galeus	G1	1		Elasmob		Х	х	х	х	Х	х	2012	GALE GAL	Tope shark
45	Galeus melastomus	G1	1		Elasmob	1	Х	х	х	Х	Х	Х	1999	GALU MEL	Blackmouth catshark
46	Heptranchias perlo	G1	1		Elasmob		Х	х	х	Х	Х	Х	2012	HEPT PER	Sharpnose sevengill shark
47	Hexanchus griseus	G1	1		Elasmob		х	х	х	Х	Х	Х	2012	HEXA GRI	Bluntnose sixgill shark
48	Leucoraja circularis	G1	1		Elasmob		х	х	х	х	х	х	2012	RAJA CIR	Sandy ray
49	Leucoraja melitensis	G1	1		Elasmob		Х	х	х	х	Х	х	2012	RAJA MEL	Maltese ray
50	Mustelus asterias	G1	1		Elasmob		х	х	х	Х	Х	Х	2012	MUST AST	Starry smoothhound
51	Mustelus mustelus	G1	1		Elasmob		х	х	х	х	х	х	2012	MUST MUS	Smoothhound
52	Mustelus punctulatus	G1	1		Elasmob		Х	х	х	Х	Х	Х	2012	MUST MED	Blackspotted smoothhound
53	Myliobatis aquila	G1	1		Elasmob		Х	х	х	Х	Х	Х	2012	MYLI AQU	Common eagle ray
54	Oxynotus centrina	G1	1		Elasmob		Х	х	х	Х	Х	Х	2012	OXYN CEN	Angular rough shark
55	Raja asterias	G1	1		Elasmob		х	х	х	х	Х	х	2012	RAJA AST	Starry ray
56	Raja clavata	G1	1		Elasmob	1	х	х	х	х	Х	х	1999	RAJA CLA	Thornback ray
57	Raja miraletus	G1	1		Elasmob		х	х	х	х	Х	х	2012	RAJA MIR	Brown ray
58	Raja polistigma	G1	1		Elasmob		х	х	х	х	Х	х	2012	RAJA POL	Speckled ray
59	Raja undulata	G1	1		Elasmob		х	х	х	х	Х	х	2012	RAJA UND	Undulate ray
60	Rhinobatos cemiculus	G1	1		Elasmob		х	х	х	х	Х	х	2012	RHIN CEM	Blackchin
61	Rhinobatos rhinobatos	G1	1		Elasmob		x	x	х	х	x	х	2012	RHIN RHI	guitarfish Common
60	Dootnongia alla	C1	1		Eleanah								2012		guitarfish White shote
62	Rostroraja alba	G1 G1	1		Elasmob	1	X	X	X	X	X	X	2012	RAJA ALB	White skate
63	Scyliorhinus canicula	01	1		Elasmob	1	Х	Х	х	Х	Х	Х	1999	SCYO CAN	Smallspotted

															catshark
64	Scyliorhinus stellaris	G1	1		Elasmob		х	х	х	Х	Х	х	2012	SCYO STE	Nursehound
65	Squalus acanthias	G1	1		Elasmob		Х	х	х	Х	Х	Х	2012	SQUA ACA	Piked dogfish
66	Squalus blainvillei	G1	1		Elasmob		х	х	х	Х	Х	Х	2012	SQUA BLA	Longnose
67	Squatina aculeata	G1	1		Elasmob		х	x	х	х	х	x	2012	SQUT ACU	spurdog Sawback
60	<i>c</i>	C 1											0010		angelshark
68	Squatina oculata	G1	1		Elasmob		Х	Х	Х	Х	Х	Х	2012	SQUT OCL	Smoothback angelshark
69	Squatina squatina	G1	1		Elasmob		х	х	х	х	х	х	2012	SQUT SQU	Angelshark
70	Torpedo marmorata	G1	1		Elasmob		х	х	х	х	х	х	2012	TORP MAR	Marbled
	-														electric ray
	Crustaceans														
71	Aristaeomorpha foliacea	G1	1		Cru	1	х	х	х	х	х	х	1994	ARIS FOL	Giant red
															shrimp
72	Aristeus antennatus	G1	1		Cru	1	Х	х	х	х	х	х	1994	ARIT ANT	Blue and red
															shrimp
73	Nephrops norvegicus	G1	1		Cru	1	Х	х	Х	Х	X	X	1994	NEPR NOR	Norway
		~ .			~										lobster
74	Parapenaeus longirostris	G1	1		Cru	1	Х	х	Х	Х	Х	X	1994	PAPE LON	Deep-water
		C 2		1	G								2012	DALLELE	pink shrimp
75	Palinurus elephas	G3		1	Cru		х	х	х				2012	PALI ELE	Spiny lobster
76	Melicertus kerathurus	G2		1	Cru		Х	Х	Х				2012	PENA KER	Caramote
		C 2		1	C								2012	COLUMAN	prawn
77	Squilla mantis	G2		1	Cru		х	х	х				2012	SQUI MAN	Spottail mantis squillids
_	Conholonoda														squiinas
78	Cephalopods Eledone cirrhosa	G2		1	Cef	1	X	X	x				1994	ELED CIR	Horned
10	Eleaone cirmosa	02		1	Cer	1	А	х	Х				1994	ELED CIK	octopus
79	Eledone moschata	G2		1	Cef	1	х	х	х				1997	ELED MOS	Musky
1)	Eleaone moschala	02		1	CCI	1	л	л	л				1))/	ELED MOS	octopus
80	Illex coindettii	G2	1		Cef	1	x	x	x	х	X	X	1994	ILLE COI	Broadtail
00	mex connuclini	02	1		Cei	T	А	А	А	А	А	А	1774	ILLE COI	squid
81	Loligo vulgaris	G2	1		Cef	1	х	x	x	X	x	Х	1994	LOLI VUL	European
01		0-	-			-								2021 (02	squid
82	Octopus vulgaris	G2		1	Cef	1	х	х	х				1994	OCTO VUL	Common
															octopus
83	Sepia officinalis	G2		1	Cef	1	х	х	х				1994	SEPI OFF	Common
	_ 00														cuttlefish
84	Todarodes sagittatus	G2		1	Cef		х	х	х				2012	TODA SAG	Arrow squid
*not	all Epinephelus and Scomber	species ar	e listed but the	he single sp	ecies should l	be conside	ered as ta	rget							


Note: rule to take TL of Elasmobranches holds also for bony fish

• For *chimaeroids* species the total length often is difficult to measure, because the caudal filament can easily be cut. The body length (snout to posterior end of supracaudal fin) is then a preferred measurement. Taking both measures on not damaged specimens can allow to confront both measures fitting a linear model to the data.


The body length in chimaeroids species

• For the same reason in Myliobatidae, Dasyatidae and Rhinopteridae the length of disc can be taken.

Length of disc in the Myliobatidae, Dasyatidae and Rhinopteridae species

• For Rajidae and Torpenidae it is recommended to take other measurements as length and width of the disc.

Length and width of the disc for the Rajidae and Torpenidae species

VIII. Codes of sexual maturity for Fish, Crustaceans and Cephalopods

VIII.A BONY FISH

SEX	GONAD ASPECT	MATURATION STATE	STAGE	MEDITS
Ι	Sex not distinguished by naked eye. Gonads very small and translucid, almost transparent. Sex undetermined.	UNDETERMINED	0	0
F M	Small pinkish and translucent ovary shorter than 1/3 of the body cavity. Eggs not visible by naked eye. Thin and withish testis shorter than 1/3 of the body cavity.	IMMATURE=VIR GIN	1	1
F M	cavity.Small pinkish/reddish ovary shorter than ½ of e body cavity. Eggs not visible by naked eye.Thin withish testis shorter than 1/2 of the body	VIRGIN- DEVELOPING*	2a	
F M	cavity.Pinkish-reddish/ reddish-orange and translucentovary long about ½ of the body cavity. Blood vesselsvisible. Eggs not visible by naked eye.Withish/pinkish testis, more or less symmetrical, longabout ½ of the body cavity	RECOVERING*	2b	2
F	Ovary pinkish-yellow in colour with granular appearance, long about 2/3 of the body cavity. Eggs are visible by naked eye trough the ovaric tunica, which is not yet translucent. Under light pressure eggs are not expelled.	e body cavity. Eggs the ovaric tunica, der light pressure MATURING		
M F M	Withish to creamy testis long about 2/3 of the body cavity. Under light pressure sperm is not expelled.Ovary orange-pink in colour, with conspicious superficial blood vessels, long from 2/3 to full length of the body cavity. Large transparent, ripe eggs are cleary visible and could be expelled under light pressure. In more advanced conditions, eggs escape freely.Whitish-creamy soft testis long from 2/3 to full length of the body cavity. Under light pressure, sperm could be expelled. In more advanced conditions, sperm	MATURE/SPAWN ER	3	3
F	escapes freely.Reddish ovary shrunked to about 1/2 length of the body cavity. Flaccid ovaric walls; ovary may contain remanants of disintegrating opaque and/or translucent eggs.Bloodshot and flabby testis shrunken to about 1/2 length of the body cavity	SPENT	4 a	4
F M	Pinkish and translucent ovary long about 1/3 of the body cavity. Eggs not visible by naked eye. Whitish/pinkish testis, more or less simmetrical, long about 1/3 of the body cavity.	RESTING*	4b	

*be careful, these stages can be easily confused

VIII.B Elasmobranchs oviparous

1 Sex not distinguished by naked eye. UNDETERMINED 0 0 F Ovary is barely discernible with small is odiametric eggs. Distal part of oviducts is thick-walled and whitish. The nidamental glands are less evident. 1 1 M Claspers are small and flaccid and do not reach the posterior edge of the pelvic fins. Spermducts not differentiated. Testis small and narrow. 1 1 F Whitish and/or few yellow maturing eggs are visible in the ovary. The distal part of oviducts (uterus) is well developed but empty. The nidamental glands are small. MATURIN*G 2 2 M Claspers are larger, but skeleton still flexible. They extend to the posterior edge of the pelvic fins. Spermducts well developed eventually beginning to meander. MATURIN*G 2 2 F Ovaries contain yellow eggs (large yolk eggs). The nidamental glands are genarged and oviducts are distended. MATURE 3a M Claspers extends well beyond the posterior edge of the pelvic fin and their internal structure is generally hard and ossified. Testis greatly enlarged. MATURE/EXTRUDING-ACTIVE 3b F Ovary walls transparent. Oocytes of different sizes, white or yellow. MATURE/EXTRUDING-ACTIVE 3b F Ovary walls transparent. Oocytes of different size, skeleton hardened with axial cartilages hardened and pointed. Spermducts heargely. Sperm flowing on pressure from cloaca (Active Stage).	SEX	GONAD ASPECT	MATURATION STATE	STAGE	MEDITS
FOrary is barely discernible with small isodiametric eggs. Distal part of oviducts is thick-walled and whitish. The nidamental glands are less evident.MMATURE/VIRGIN1MChaspers are small and flaccid and do not crach the posterior edge of the pelvic fins. Spermducts not differentiated. Testis are visible in the ovary. The distal part of oviducts (uterus) is well developed but empty. The nidamental glands are small. developed eventually beginning to meander.MATURE/VIRGIN11MChaspers are larger, but skeleton still nexible. They extend to the posterior edge of the pelvic fins. Spermducts well developed eventually beginning to meander.MATURE/N*G22FOvaries contain yellow eggs (large yolk eggs). The nidamental glands are enlarged and oviducts are distended.MATURE3aMChasper sevenals well beyond the posterior edge of the pelvic fin and their internal structure is generally hard and ossified. Testis greatly enlarged. Spermducts meandering over almost their entire length.MATURE/EXTRUDING- ACTIVE3aFOvary walls transparent. Ocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding Spermducts largely. Sperm flowing on previct fin lobes, skeleton hardened with axial cartilages bardened and pointed. Spermducts largely. Sperm flowing on previct fin lobes, skeleton hardened with axial cartilages shelled on hardened with axial cartilages shelled nardened with axial cartilages dial flow of posterior pelvic fin lobes, skeleton hardened with axial cartilages dial hardened. Spermducts empty and flaccid.REGENERATING*4aFOv					
are visible in the ovary. The distal part of oviducts (uterus) is well developed but empty. The nidamental glands are small.MATURIN*G2MClaspers are larger, but skeleton still flexible. They extend to the posterior edge of the pelvic fins. Spermducts well developed eventually beginning to meander.MATURIN*G22FOvaries contain yellow eggs (large yolk eggs). The nidamental glands are enlarged and oviducts are distended.MATURE3aMClaspers extends well beyond the posterior edge of the pelvic fin and their internal structure is generally hard and ossified. Testis greatly enlarged. Spermducts meandering over almost their entire length.MATURE3aFOvary walls transparent. Oocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding Stage).MATURE/EXTRUDING- ACTIVE3bFOvary walls transparent. Oocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding stage).ActTIVE3bFOvary walls transparent. Oocytes of different sizes, white or yellow. Oviducts appear much enlarged, collapsed and empty. The nidamental glands diameter are reducing.RESTING4aMClasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages still hardened. Spermducts empty and flaccid.REGENERATING*4b		Ovary is barely discernible with small isodiametric eggs. Distal part of oviducts is thick-walled and whitish. The nidamental glands are less evident. Claspers are small and flaccid and do not reach the posterior edge of the pelvic fins. Spermducts not differentiated. Testis		1	1
FOvaries contain yellow eggs (large yolk eggs). The nidamental glands are enlarged and oviducts are distended.MartuneSet and and and and and and and and and and assified. Testis greatly enlarged. Spermducts meandering over almost their entire length.MATURE3aFOvary walls transparent. Oocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding Stage).MATURE/EXTRUDING- 		are visible in the ovary. The distal part of oviducts (uterus) is well developed but empty. The nidamental glands are small. Claspers are larger, but skeleton still flexible. They extend to the posterior edge of the pelvic fins. Spermducts well developed eventually beginning to	MATURIN*G	2	2
posterior edge of the pelvic fin and their internal structure is generally hard and ossified. Testis greatly enlarged. Spermducts meandering over almost their entire length.MATURE3aFOvary walls transparent. Oocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding Stage).MATURE/EXTRUDING- ACTIVE3aMClasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages hardened and pointed. Spermducts largely. Sperm flowing on pressure from cloaca (Active Stage).MATURE/EXTRUDING- ACTIVE3bFOvary walls transparent. Oocytes of different sizes, white or yellow. Oviducts appear much enlarged, collapsed and empty. The nidamental glands diameter are reducing.RESTING4aMClasper longer than tips of posterior 		Ovaries contain yellow eggs (large yolk eggs). The nidamental glands are enlarged and oviducts are distended.			
different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding Stage).MATURE/EXTRUDING- ACTIVE3bMClasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages hardened and pointed. 	Μ	posterior edge of the pelvic fin and their internal structure is generally hard and ossified. Testis greatly enlarged. Spermducts meandering over almost	MATURE	3 a	
MClasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages hardened and pointed. Spermducts largely. Sperm flowing on pressure from cloaca (Active Stage).ACTIVEFOvary walls transparent. Oocytes of different sizes, white or yellow. Oviducts appear much enlarged, collapsed and empty. The nidamental glands diameter are reducing.Image: Clasper longer than tips of posterior pelvic fin lobes, skeleton hardened with 	F	Ovary walls transparent. Oocytes of different sizes, white or yellow. Nidamental glands large. Egg-cases more or less formed in the oviducts (Extruding	MATURE/EXTRUDING-	3h	3
different sizes, white or yellow. Oviducts appear much enlarged, collapsed and empty. The nidamental glands diameter are reducing.Image: Collapse and are reducing.Image: Collapse and amental glands diameterMClasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages still hardened. Spermducts empty and flaccid.RESTING4aFOvaries full of small follicles similar to stage 2, enlarged oviducal glands andREGENERATING*4b		pelvic fin lobes, skeleton hardened with axial cartilages hardened and pointed. Spermducts largely. Sperm flowing on pressure from cloaca (Active Stage).	ACTIVE	- 50	
pelvic fin lobes, skeleton hardened with axial cartilages still hardened. 4 Spermducts empty and flaccid. 4 F Ovaries full of small follicles similar to stage 2, enlarged oviducal glands and REGENERATING* 4b		different sizes, white or yellow. Oviducts appear much enlarged, collapsed and empty. The nidamental glands diameter are reducing.	RESTING	4a	
FOvaries full of small follicles similar to stage 2, enlarged oviducal glands andREGENERATING*4b	M	pelvic fin lobes, skeleton hardened with axial cartilages still hardened.			4
	F	Ovaries full of small follicles similar to stage 2, enlarged oviducal glands and	REGENERATING*	4b	

*be careful, these stages can be easily confused

VIII.C Elasmobranchs viviparous

	VIVIPAROUS ELASMOBRAN	CHES (RAYS AND SHA	RKS)	
Sex	GONAD ASPECT	MATURATION STATE	MATURITY	STAGE
Ι	Sex not distinguished by naked eye.	UNDETERMINED	IMMATURE	0
M F	Claspers flexible and shorter than pelvic fins. Testes small (in rays, sometimes with visible lobules). Sperm ducts straight and thread-like. Ovaries barely visible or small, whitish; undistinguishable ovarian follicles. Oviducal (nidamental) gland may be slightly visible. Uterus is thread-like and narrow.	IMMATURE	IMMATURE	1
M F	Claspers slightly more robust but still flexible. Clasp-ers as long as or longer than pelvic fins. Testes enlarged; in sharks testes start to segment; in rays lobules clearly visible but do not occupy the whole surface. Sperm ducts developing and beginning to coil (meander). Ovaries enlarged with small follicles (oocytes) of	DEVELOPING	IMMATURE *	2
	dif-ferent size. Some relatively larger yellow follicles may be present. Ovaries lack atretic follicles. Developing oviducal gland and uterus.			
M	Claspers fully formed, skeleton hardened, rigid and generally longer than pelvic fins. Testes greatly enlarged; in sharks testes are fully segmented; in rays filled with developed lobules. Sperm ducts tightly coiled and filled with sperm.	SPAWNING CAPABLE	MATURE	3a
F	Large ovaries with enlarged yolk follicles all of about the same size so that they can be easily distinguished. Oviducal gland and uterus developed without yolky matter, embryos and not dilated.	CAPABLE to RE- PRODUCE	MATORE	34
М	Description similar to stage 3a, however with clasper glands dilated, often swollen and reddish (occasion-ally open). Sperm often present in clasper groove or glans. On pressure sperm is observed flowing out of the cloaca or in the sperm ducts.	ACTIVELY SPAWNING	MATURE	3b
F	Uteri well filled and rounded with yolk content (usually candle shape). In general segments cannot be distinguished and embryos cannot be observed.	EARLY PREGNANCY	MATERNAL	
F	Uteri well filled and rounded, often with visible segments. Embryos are always visible, small and with a relatively large yolk sac.	MID PREGNANCY	MATERNAL	Зс
F	Embryos fully formed, yolk sacs reduced or absent. Embryos can be easily measured and sexed.	LATE PREGNANCY	MATERNAL	3d
М	Claspers fully formed, similar to stage 3. Testes and spermducts shrunken and flaccid.	REGRESSING	MATURE	4
F	Ovaries shrunken without follicle development and with atretic (degenerating) follicles. The oviducal glands diameter may be reducing. Uterus appears much enlarged, collapsed, empty and reddish.	REGRESSING	MATURE	4a
F	Ovary with small follicles in different stages of de- velopment with the presence of atretic ones. Uterus enlarged with flaccid walls. Oviducal gland distinguishable. reful these stages can be easily confused	REGENERATING (mature)	MATURE *	4b

*be careful, these stages can be easily confused

VIII.D Crustaceans

SEX	REPRODUCTIVE APPARATUS ASPECT	COLOURING OF FRESH OVARY	MATURATION STATE	STAGE	MEDITS
I	Sex not distinguished by naked eye. Sex undetermined	translucid	UNDETERMINED	0	0
F	Ovary hardy visible in transparence. After dissection of the tegument ovary is small and lobes are flaccid, stringy and poorly developed. <i>A. foliacea</i> and <i>A. antennatus</i> no sphermatophores on thelycum.	Whitish or traslucid	IMMATURE = VIRGIN *	1	1 FEMALE
М	Petasma is not much visible, and there are not spermatic masses (emi-spermatophores) on the seminal annipullae, located on side of the V pair of pereiopods. <i>A. foliacea</i> and <i>A. antennatus</i> : long rostrum	WILLISH OF RESILER		1	TIME
F	Ovary status to develop. Cephalic and lateral lobes are small but distinguishable by naked eye. Abdominal extension are thin and just visible.	A. foliacea : flesh coloured; A. antennatus: Ivory coloured with	VIRGIN DEVELOPING		
М	Petasma appears visible and nearly or completely joined, but there are no spermatic masses in the seminar ammpullae. <i>A. foliacea & A.</i> <i>antennatus</i> : long or intermediate rostrum.	orange pink-violet dotting. <i>N. norvegicus</i> : cream. <i>P. longirostris</i> : cream orange.	**	2a	
F	Ovary status to re-develop. Cephalic and lateral lobes are small but distinguishable by naked eye. Abdominal extension are thin and just visible. Occasionally presence of spermatophores in <i>A.</i> <i>foliacea</i> and <i>A. antennatus</i> .	A. foliacea : flesh coloured; A. antennatus : Ivory coloured with orange pink-violet dotting.	RECOVERING**	2b	
М	Petasma appears completely joined, but there are no spermatic masses in the seminar ampullae. A. foliacea & A. antennatus : short rostrum.	N. norvegicus : cream. P. longirostris : cream orange.			2 FEMALE
F	Ovary developed and occupies almost entirely the dorsal portion. The cephalic and lateral lobes are much developed and have a turgid consistence.	A. foliacea : light and dark grey; A. antennatus : lilla; N. norvegicus : light green; P. longirostris : light green or grey green.	MATURING OR ALMOST MATURE	2e	
М		green.			
F	Turgid ovary extends to the whole dorsal portion, covery the organs below. Lobes and extensions well developed, in particular the abdominal extention are much evident. Oocytes well visible.	A. foliacea : black; A. antennatus : violet; N. norvegicus : dark grey;	MATURE	2d	
М	Petasma is perfectly visible and completely joined. Spermatic masses in seminar ampullae. <i>A. foliacea & A. antennatus</i> : small rostum.	P. longirostris : brigth green or olive green.			
F	Resting ovary. Presence of spermatophores in A. foliacea and A. antennatus.	Uncoloured.	RESTING ADULT*	2e	
F (N. norvegicus)	Eggs on pleiopods		BERRIED	3	3 N. norvegicus, FEMALE

Adult specimens

*, ** : WARNING ! Be careful.These stages could be confused each other.

VIII.E Cephalopods

SEX	REPRODUCTIVE APPARATUS ASPECT	EGGS SIZE (mm)	SPERMATOPHORES DEVELOPMENT	MATURATION STATE	STAGE	MEDITS
T	Sex not distinguished by naked eye. Sex undetermined.	Total absence of eggs.	Total absence of spermatophores.	UNDETERMINED	0	0
F	Small and translucid Nidamental Glands (NG) / Oviducal Glands (OG). Ovary is semi-transparent, stringy and lacking granular structure Small semi- transparent NG / OG. Oviduct meander not visible.	L. vulgaris & I. coindetii: no eggs S.officinalis: Ø <2mm E. moschata: Ø <4mm	Total absence of spermatophores	IMMATURE = VIRGIN	1	1
м	Testis small. Spermatophoric complex (SC) semi- transparent with not visible Vas deferens. Penis appears as a small prominence of SC.	E. cirrhosa Ø <2mm O. vulgaris Ø <1mm				
F	NG / OVG enlarged. NG covering some internal organs. Whitish ovary with granular structure clearly visible, not reaching the posterior half of the mantle cavity. Oviduct meander clearly visible.	Very small eggs	Absence of spermatophores	DEVELOPING	2a	
М	Enlarged testis with structure not clearly visible. The Vas deferens whitish or white and the spermatophoric organ with white streak.					
F	Large NG covering the viscera below. Ovary occupies the whole posterior half of mantle cavity, containing reticulated oocytes of all sizes tightly packed and probably a few ripe ova at its proximal part. Oviducts fully developed but empty.	L. vulgaris & I. coindetii : maturing eggs visible by naked eye. S.officinalis:	L. vulgaris, I. coindetii and S.officinalis: few immature spermatophores in Needham's sac.		2Ъ	2
м	The Vas deferens white, meandering, enlarged. The Needham's sac (SS) with structureless whitish particles inside. Normally the Needham's sac is without funtional spermatophores but sometimes some immature/abortive ones could occur. The testis tight, crispy, with visible structure.	2,1nun< Ø<4nun E. moschata: 4nun<Ø<11nun E. cirrhosa: 2nun<Ø<5nun O. vulgaris: 1nun<Ø<2nun	E. moschata, E. cirrhosa, O. vulgaris : few spermatophores, barelly developed and not functional	MATURING		
F	Large NG as previously. Ovary containing higher percentage of large reticulated eggs and some large ripe ova with smooth surface. In Teuthoidea ripe ova in oviducts.	L. vulgaris & I. coindetii : amber- colored and isodiametric eggs in oviducts and in part of the ovary (0 =2mm in Loligo and 0 =1mm in Illex). S. officinalis : medium eggs			_	
м	Testis as before. Spermatophores packed in the Needham's sac.	 (4, Imm< ⊗<6,0mm) and big eggs (6, Imm<Ø<8mm) <i>E. moschata</i>: Ø>11mm (striped eggs). <i>E. cirrhosa</i>: Ø>5mm <i>O. vulgaris</i>: Ø>2mm 	Well developed spermatophores	MATURE	3a	3
F	NG/OG large but soft and running. Ovary shrinked and flaccid, with only immature oocytes attached to the central tissue and a few loose large ova in the coelom. In Teuthoidea oviduct may contain some mature ova but is no longer packed.	Few large ova	Disintegrating spermatophores	SPENT	3b	
м	Disintegrating spermatophores in the Needham's sac and the penis.					

IX. Protocol for Conversion of maturity scales from the scales proposed at the Workshops on Maturity stages and the MEDITS scales

Adopted during the MEDITS meeting, Nantes (France), 15-17/03/2011 and amended during the MEDITS meeting in Heraklion (12-14/03/2013)

The protocol for conversion of maturity scales adopted during the MEDITS Coordination meeting, Nantes (France), 15-17/03/2011 is here reported with some editorial changes .

	MEDITS SCALE	WKMAT	
		SCALE	
0	INDETERMINED		
1	IMMATURE /VIRGIN	1	IM - VIRGIN
2A	VIRGIN DEVELOPING	1	IM - VIRGIN
2B	RECOVERING	4	SP/RE - SPENT RECOVERY
2C	MATURING	2	MI - MATURING
3	MATURE/SPAWNER	3	MA - SPAWNING
4A	SPENT	4	SP/RE - SPENT RECOVERY
4B	RESTING	4	SP/RE - SPENT RECOVERY
5		5	OS - OMITTED SPAWNING
			(shrunken and greyer gonads sexually mature, not
			contributing to the SSB)

Conversion of maturity scale for Merluccius merluccius

Notes:

- The WKMAT scale has a unique stage for "Spent/recovery" while in the MEDITS scale these stages are divided in 2B (Recovering), 4A (Spent) and 4B (Resting).
- During the MEDITS meeting in Nantes, it was suggested to include stage 5 (omitted spawning) in the MEDITS scale. However, a better understanding and a feedback from experts using the WKMAT scale to better apply the classification of this stage and to recognize how it can be macroscopically recognized, is necessary.

Conversion of maturity scale for *Lophius spp*.

	MEDITS SCALE	WKMAT SCAL	LE
0	INDETERMINED		
1	IMMATURE /VIRGIN	1	IMMATURE
2A	VIRGIN DEVELOPING	2	DEVELOPING RESTING
2B	RECOVERING	2	DEVELOPING RESTING
2C	MATURING	3	MATURING/PRE SPAWNING
3	MATURE/SPAWNER	4	SPAWNING
4A	SPENT	5	POST-SPAWNING
4B	RESTING	2	DEVELOPING RESTING

Notes:

- The WKMAT scale has a unique stage for "Developing Resting" while in the MEDITS scale these stages are divided in 2A (Virgin developing), 2B (Recovering) and 4B (Resting).

Crustacean maturity scale key

MEDITS	SCALE	WKMSC SCALE		
0	INDETERMINED	0	UNDETERMINED	
1	IMMATURE VIRGIN	1	IMMATURE	
2a	VIRGIN DEVELOPING	2	DEVELOPING/RECOVERING	
2b	RECOVERING	2	DE VELOFING/RECOVERING	
2c	MATURING OR ALMOST	3	MATURING	

2d	MATURE	4	MATURE
2e	RESTING ADULT	5	SPENT
3	BERRIED (only for Nephrops		

Notes:

- A lot of similarities have been found between the WKMSC and MEDITS scales. Only the stages 2a (Virgin developing) and 2b (Recovering) of the MEDITS scale have been joined into a unique stage 2 (developing/recovering) in the WKMSC one, since differences cannot be found by a macro and micro point of view.
- In the MEDITS scale, for *Nephrops norvegicus* females, there is also a stage 3 (Berried). However, in the WS only ovary stages were analyzed and it wasn suggested to always consider the stage of the ovaries even for females with the eggs in the pleiopods. However the problem remains for the old data: the stage 3 could in fact be either 2B and 2E stages. During the meeting in Nantes it was decided that in case of comparing MEDITS data of *N. norvegicus* with maturity data from the WKMSC scale, the 3 (Berried) stage (MEDITS scale) will be considered as the 5 (Spent) of the WKMSC scale.

MEDITS	SCALE	WKMSEL SCALE			
0	INDETERMINED	0	UNDETERMINED		
1	IMMATURE VIRGIN	1	IMMATURE		
2	MATURING	2	DEVELOPING		
3a	MATURE	3a	SPAWNING CAPABLE		
3b	MATURE/EXTRUDING-ACTIVE	3b	ACTIVELY SPAWNING		
4a	REGRESSING	4a	REGRESSING		
4b	REGENERATING*	4b	REGENERATING*		

Elasmobranches maturity scale key

Notes: *Only for females

- For the Elasmobranches, the first 5 stages present many common points between the two scales (WKMSEL and MEDITS). In the WKMSEL, another stage, 4b (regenerating) for females, has been added. It is similar to stage 2 but with enlarged oviductal glands and uterus. It should be added also in the MEDITS scale.
- The WKMSEL scale regards only the oviparous species. During the WS, a new scale for the viviparous species has been created and is being adopted as part of this manual.

Cephalopods maturity scale key

MEDITS SCALE		WKMCEPH SCA	WKMCEPH SCALE	
0	INDETERMINED	0	UNDETERMINED	
1	IMMATURE VIRGIN	1	IMMATURE VIRGIN	
2a	DEVELOPING	2a	DEVELOPING	
2b	MATURING	2b	MATURING	
3a	MATURE	3a	MATURE/SPAWNING	
3b	SPENT	3b	SPENT	

Notes:

No particular differences have been identified between the WKMCEPH scale and the MEDITS one for the cephalopods.

Name	Туре	Position	Range	Comments
TYPE_OF_FILE	2A	1 - 2	TA	Fixed value
COUNTRY	3A	3 - 5	See Annex I	ISO Code
AREA	2N	6 - 7	See Annex III	GFCM Code
VESSEL	3A	8 - 10	See Annex I	MEDITS Code
GEAR	5AN	11 - 15	See Annex I	MEDITS Code
RIGGING	4AN	16 - 19	See Annex I	MEDITS Code
DOORS	4AN	20 - 23	See Annex I	MEDITS Code
YEAR	4N	24 - 27		e.g. 2000
MONTH	2N	28 - 29	1 to 12	
DAY	2N	30 - 31	1 to 28/29/30/31	
HAUL_NUMBER	3N	32 - 34	1 to 999	One series by vessel/year
CODEND_CLOSING	1A	35 - 35	S, C	S: without; C: controlled
PART_OF_THE_CODEND	1A	36 - 36	A, M, P, S	Mandatory if codend closing = C; A: anterior, M: middle; P: posterior; S sum of the 3 parts
SHOOTING_TIME	4N	37 - 40	0 to 2400	In UT Ex: 7 h 25 min > 725
SHOOTING_QUADRANT	1N	41 - 41	1, 3, 5, 7	See Annex IV
SHOOTING_LATITUDE	7N	42 - 48	3400 to 4600	Ex: 36° 40,22' > 3640,22.
SHOOTING_LONGITUDE	7N	49 - 55	0 to 3500	Ex: 4° 19,84' > 419,84
SHOOTING_DEPTH	3N	56 - 58	0, 10 to 800	At the trawl position, in meters; unknown: 0
HAULING_TIME	4N	59 - 62	0 to 2400	In UT Ex: 7 h 25 min > 725
HAULING_QUADRANT	1N	63 - 63	1, 3, 5, 7	See Annex IV
HAULING_LATITUDE	7N	64 - 70	3400 to 4600	Ex: 36° 40,22' > 3640,22.
HAULING_LONGITUDE	7N	71 - 77	0 to 2900	Ex: 4° 19,84' > 419,84
HAULING_DEPTH	3N	78 - 80	0, 10 to 800	At the trawl position, in meters; unknown: 0
HAUL_DURATION	2N	81 - 82	5 to 90	In minutes
VALIDITY	1A	83 - 83	V, I	V: valid; I: invalid.
COURSE	1A	84 - 84	R, N	R: rectilinear; N: not rectilinear
RECORDED_SPECIES	2N	85 - 86	See Annex IV	MEDITS code
DISTANCE	4N	87 - 90	1000 to 9999	Distance over ground in meters
VERTICAL_OPENING	3N	91 - 93	10 to 100	In decimeters
WING_OPENING	3N	94 - 96	50 to 250	In decimeters
GEOMETRICAL_PRECISION	1A	97 - 97	M, E	M: measured; E: estimated.
BRIDLES_LENGTH	3N	98 - 100	100, 150 or 200	In meters
WARP_LENGTH	4N	101 - 104	100 to 2200	In meters
WARP_DIAMETER	2N	105 - 106	10 to 30	In millimeters
HYDROLOGICAL_STATION	5A or 2A	107 - 111		National coding or NA if not available
OBSERVATIONS	1N	112 - 112	0 to 9	MEDITS code (Annex IV)
BOTTOM_TEMPERATURE_BEGINNING	5N or 2A	113 - 117	0 to 30	in $^\circ C$ with two decimals; NA if not available
BOTTOM_TEMPERATURE_END	5N or 2A	118 - 122	0 to 30	in °C with two decimals; NA if not available
MEASURING_SYSTEM	2A	123 - 124	see Annex X.a	see Annex X.a; NA if not available
NUMBER_OF_THE_STRATUM	6AN	125 - 130	see Annex II	
BOTTOM_SALINITY_BEGINNING	5N or 2A	131-135	0 to 50	in ppt with two decimals; NA if not available
BOTTOM_SALINITY_END	5N or 2A	136-140	0 to 50	in ppt with two decimals; NA if not available
MEASURING_SYSTEM	2A	141-142	see Annex X.a	see Annex X.a; NA if not available

X. Format of the type A files (Data on the haul)

Legend A: alphabetic field; N: numerical field; AN alpha-numeric field Before the type of the field there is the number of digit allowed for the field (e.g. 2N: numeric field with length 2) ⁽¹⁾ For the invalid hauls (I), no information on species

Annex X.a		
System	Code	Notes
Vemco- Minilog TDR -5 to +35 C°	VA	
Star Oddi temperature sensor	SO	
XBT	XA	
SCANMAR	SA	
SIMRAD	SI	
CTD probe	СТ	
SBE 56	SB	Temperature logger introduced by GSA19 in 2013
CTD probe SBE 37	CD	GSA19 III 2013

Note: In case a different system is used this should be communicated to the coordinator to get a code.

Name	Туре	Position	Range	Comments
TYPE_OF_FILE	2A	1 - 2	TB	Fixed value
COUNTRY	3A	3 - 5	See Annex I	ISO Code
AREA	2N	6 - 7	See Annex III	GFCM Code
VESSEL	3A	8 - 10	See Annex I	MEDITS Code
YEAR	4N	11 - 14		e.g. 2000
MONTH	2N	15 - 16	1 to 12	
DAY	2N	17 - 18	1 to 28/29/30/31	
HAUL_NUMBER	3N	19 - 21	1 to 999	One series by vessel/year
CODEND_CLOSING	1A	22 - 22	S, C	S: without; C: controlled
PART_OF_THE_CODEND	1A	23 - 23	A, M, P, S	Mandatory if Codend closing = C; A: anterior, M: middle; P: posterior; S sum of the 3 parts
FAUNISTIC_CATEGORY	3A	24 - 26	See Annexe V	MEDITS code
GENUS	4A	27 - 30	See Annex XV	Following the Reference List
SPECIES	3A	31 - 33	See Annex XV	Following the Reference List
NAME_OF_THE_REFERENCE_LIST	2A	34 - 35	See Annex XV	NCC or MEDITS FM list
TOTAL_WEIGHT_IN_THE_HAUL	7N	36 - 42	0 to 9999999	For the given species, in grams
TOTAL_NUMBER_IN_THE_HAUL	7N	43 - 49	0 to 9999999 *	For the given species. Should be equal to the sum of the 3 following fields.
NB_OF_FEMALES	7N	50 - 56	0 to 9999999*	
NB_OF_MALES	7N	57 - 63	0 to 9999999 *	
NB_OF_UNDETERMINED	7N	64 - 70	0 to 9999999 *	Undetermined or not determined

XI. Format of the type B files (Catches by haul)

Legend

A: alphabetic field; N: numerical field; AN alpha-numeric field

Before the type of the field there is the number of digit allowed for the field (e.g. 2N: numeric field with length 2)

*Not mandatory for faunistic category V,G,H, D, and E, in this case the number will be 0.

Note: the fields, NB_OF_FEMALES, NB_OF_MALES, are mandatory for the years 1994-2011 for the MEDITS target species, while since 2012 NB_OF_FEMALES, NB_OF_MALES are mandatory for the MEDITS G1 species list, unless the individuals are all UNDETERMINED (in TC as well). In case the species was not a target in 1994-2011 or is not a G1 species since 2012, the field NB_OF_UNDETERMINED should be always filled and should be equal to the field

TOTAL_NUMBER_IN_THE_HAUL. The fields, NB_OF_FEMALES and NB_OF_MALES will be 0.

Name	Туре	Position	Range	Comments
TYPE_OF_FILE	2A	1 - 2	TC	Fixed value
COUNTRY	3A	3 - 5	See Annex I	ISO Code
AREA	2N	6 - 7	See Annex III	GFCM Code
VESSEL	3A	8 - 10	See Annex I	MEDITS Code
YEAR	4N	11 - 14		e.g. 2000
MONTH	2N	15 - 16	1 to 12	
DAY	2N	17 - 18	1 to 28/29/30/31	
HAUL_NUMBER	3N	19 - 21	1 to 999	One series by vessel/year
CODEND_CLOSING	1A	22 - 22	S, C	S: without; C: controlled
PART_OF_THE_CODEND	1A	23 - 23	A, M, P, S	Mandatory if Codend closing = C; A: anterior, M: middle; P: posterior; S sum of the 3 parts
FAUNISTIC_CATEGORY	3A	24 - 26	See Annexe V	MEDITS code
GENUS	4A	27 - 30	See Annex XV	Following the Reference List
SPECIES	3A	31 - 33	See Annex XV	Following the Reference List
LENGTH_CLASSES_CODE	1A or 1N	34 - 34	m, 0, 1#	Type of classes: m: 1 mm; 0: 0.5 cm; 1: 1cm
WEIGHT_OF_THE_FRACTION	6N	35 - 40	0 to 999999	Weight of the fraction in the whole haul in grams
WEIGHT_OF_THE_SAMPLE_MEASURED	6N	41 - 46	0 to 999999	Weight of the sample really measured for length, sex and maturity stages (in grams)
SEX	1A	47 - 47	M, F, I, N	M: male; F: female; I: indetermined; N: not determined
NO_OF_INDIVIDUAL_OF_THE_ABOVE_SEX_ME ASURED	6N	48 - 53	1 to 999999	Number of individuals of the above sex measured in the sample
LENGTH_CLASS	4N	54 - 57	1 to 9999	Identifier: lower limit of the class in mm; e.g. 30.5-31 cm ->305 (LENGTH_CLASS_CODE:0)
MATURITY	1N or 2A	58 - 59	0 to 4; ND***: Not Determined (allowed from 2012)	See Annexes VIIIa-VIIIe. Maturity codes are according to the blue column since 2007 onwards; ND: Not Determined (allowed from 2012 for species G2 and for species G1 only in case staging is particularly difficult, despite the specimens are sexed)
MATSUB##	2A	60 - 61	from A to E; ND***: Not Determined (allowed from 2012)	introduced in 2007; See Annexes VIIIa- VIIIe maturity codes are according to the blue column since 2007 onwards; ND: Not Determined (allowed from 2012 for species G2 and for species G1 only in case staging is particularly difficult, despite the specimens are sexed).
NUMBER_OF_INDIVIDUALS_IN_THE_LENGTH_ CLASS_AND_MATURITY_STAGE	6N	62 - 67	1 to 999999	No of individuals per maturity stage and length class for a given sex. The length classes without any individual are excluded from the file. The sum of No of individuals per class and sex is the No of individuals measured per sex. When maturiy stage is ND (since 2012) this field is the No per class and sex.

XII. Format of type C files (length and aggregated biological parameters)

Legend

A: alphabetic field; N: numerical field; AN alpha-numeric field

Before the type of the field there is the number of digit allowed for the field (e.g. 2N: numeric field with length 2)

* All numerical fields (N) are right justified; all alphanumeric fields (A) fields are left justified

** The word "Fraction" means any sub-group of individual from the total catch of a species (males, females, large sized individuals, small individuals, juveniles, etc.) on which it could be proceed to a sub-sample. For example: total weight = 1000 g which is divided into 100g of big individuals and 900 g of small. The big individuals will be entirely measured (WEIGHT_OF_THE_FRACTION = 100; WEIGTH_OF_THE_SAMPLED_MEASURED = 100). The small ones will be sub -sampled with a ratio of 1/10 (WEIGHT_OF_THE_FRACTION + 900; WEIGTH_OF_THE_SAMPLED_MEASURED = 90)

***Not Determined code (ND) was included in case length measures only were taken, as for the species coded MEDITS G2 in the Annex VI of this manual.

the class of 1 cm is allowed until 2012 as in the past years some species could have been measured at 1 cm.

##this field should be specified even when stage is 1 or 2 (in this case the field is NA) it cannot be 0 or empty.

XIII.A. Format of type E files (biological parameters at individual level)

Name	Туре	Position	Range	Comments
TYPE_OF_FILE	2A	1 - 2	TE	Fixed value
COUNTRY	3A	3 - 5	See Annex I	ISO Code
AREA	2N	6 - 7	See Annex III	GFCM Code
VESSEL	3A	8 - 10	See Annex I	MEDITS Code
YEAR	4N	11 - 14		e.g. 2000
MONTH	2N	15 - 16	1 to 12	
DAY	2N	17 - 18	1 to 28/29/30/31	
HAUL_NUMBER	3N	19 - 21	1 to 999	One series by vessel/year
FAUNISTIC_CATEGORY	3A	22 - 24	See Annexe V	MEDITS code
GENUS	4A	25 - 28	See Annex XV	Following the Reference List
SPECIES	3A	29 - 31	See Annex XV	Following the Reference List
LENGTH_CLASSES_CODE	1A or 1N	32 - 32	m, 0	Type of classes: m: 1 mm; 0: 0.5 cm
SEX	1A	33 - 33	M, F, I, N	M: male; F: female; I: indetermined; N: no determined
NO_PER_SEX_MEASURED_IN_SUB_ SAMPLE_FOR_OTOLITH	6N	34 - 39	0 to 999999	Number of individuals of the above sex measured in the sub-sample for otolith
LENGTH_CLASS	4N	40 - 43	1 to 9999	Identifier: lower limit of the class in mm; e.g. 30.5-31 cm ->305 (LENGTH_CLASS_CODE:0)
MATURITY	1N	44 - 44	0 to 4	See Annexes VIIIa-VIIIe maturity code: are according to the blue column
MATSUB	1A	45 - 45	from A to E or O	See Annexes VIIIa-VIIIe maturity code: are according to the blue column. The cod O is used in case of omitted maturity sub- stage.
INDIVIDUAL_WEIGHT	6N or 2A	46 - 51	0.1 to 999999; ND: not determined	It is mandatory only for the species in Lis G1. See Annex VI. The weight is in gram and decimals are allowed (e.g. 2.5)
NO_PER_SEX_MEASURED_IN_SUB_ SAMPLE_FOR_WEIGHT	6N	52 - 57	1 to 999999	Number of individuals of the above sex measured in the sub-sample for individua weight. In case otoliths are taken, individu weight should be reported
OTOLITH_SAMPLED	2A	58 - 59	Y or N* for Teleosts and NR for the other species	Y: otolith sampled; N: otolith not sampled NR: not requested; for species in G1 list se Annex VI
NO_PER_SEX_MEASURED_IN_SUB_ SAMPLE_FOR_AGEING	6N	60 - 65	0 to 999999	Number of individuals of the above sex measured in the sub-sample for ageing
OTOLITH_READ	2A	66 - 67	Y or N for Teleosts and NR for the other species	NR: not requested; Y: otolith read; N: otoli not read
AGE	4N or 2A	68 - 71	-1 to 99 for Teleosts, UR for unreadable, NR for the other species; -1 reading in progress or length class completed	Also decimal number for age (e.g. 10.5); NR: not requested; for species in G1 list so Annex VI UR unreadable otolith
OTOLITH_CODE	35AN	72 - 106	[Country][GSA][Vessel][Year][Haul][Genr_Spec][Stage][Sex][Length] [individual code]	ITA10PEC2012100MULL_BAR2AM110 xxxxx
RECORD_NUMBER	Ν	107-113	0 to 100.000	Record identifier by year

Legend

A: alphabetic field; N: numerical field; AN alpha-numeric field

Before the type of the field there is the number of digit allowed for the field (e.g. 2N: numeric field with length 2)

NR species for which ageing is not requested

*in case, for example, the individual is sampled for the individual weight only

This table will be filled in only for specimens (already entered in TC) for which <u>individual</u> measures have been collected Note: Otolith Code with underscore at the sub-maturity stage, if the maturity stage is only numerical.

Note: LENGTH_CLASSES_CODE and LENGTH_CLASS between TC and TE should be consistent.

Name	Туре	Position	Range	Comments
TYPE_OF_FILE	2A	1-2	TL	Fixed value
COUNTRY	3A	3-5	See Annex I	ISO Code
AREA	2N	6-7	See Annex III	GFCM Code
VESSEL	3A	8-10	See Annex I	MEDITS Code
YEAR	4N	11-14		e.g. 2000
MONTH	2N	15-16	1 to 12	
DAY	2N	17-18	1 to 28/29/30/31	
HAUL_NUMBER	3N	19-21	1 to 999	One series by vessel/year
LITTER_CATEGORY	2AN	22-23	from L1 to L9 and L0 (no litter)	See Annexe XVII
LITTER_SUB-CATEGORY	1A or 1N or 2A	24	from a to j or 0	See Annexe XVII or NA
TOTAL_WEIGHT_IN_THE_CATEGORY_HAUL	7N or 2A	25-31	0 to 9999999	For the given category, in grams (facultative) or NA
TOTAL_NUMBER_IN_THE_CATEGORY_HAUL_	7N	32-38	1 to 9999999	For the given category
TOTAL_WEIGHT_IN_ THE_SUB-CATEGORY_ HAUL	7N or 2A	39-45	0 to 9999999	For the given sub-category, in grams (facultative) or NA
TOTAL_NUMBER_IN_ THE_SUB-CATEGORY_ HAUL	7N or 2A	46-52	0 to 9999999	For the given sub-category (facultative) or NA

XIII.B. Format of type L files (litter recording)

XIV. Protocol for sampling otoliths, individual weight and maturity stages of MEDITS target species

Adopted during the MEDITS meeting, Ljubljana (Slovenia), 6-8/03/2012

A document with an overview on this subject was prepared by Maria Teresa Spedicato and circulated to the group. This document was discussed during the MEDITS coordination meeting (Ljubljana, Slovenia, 6-8/03/2012) and is attached as <u>Annex 6</u> to this Coordination meeting report.

The decisions taken during the MEDITS coordination meeting in Ljubljana (Slovenia, 6-8/03/2012) based on the above mentioned document are reported in this annex and represent the sampling protocol to collect the biological information related to otoliths, individual weight and maturity stage by sex from MEDITS survey in 2012.

Objectives

The MEDITS meeting held in Nantes on 15-17 March 2011 agreed to increase the information recorded during the MEDITS survey, including the monitoring of new biological variables, such as age of bony fish species coded G1 in the new list of target species, and individual weight of all the species coded G1 in the same list. Data on the Maturity Stages for the same species should also be collected.

Age monitoring of bony fish, which implies otolith sampling, requires a common protocol to harmonise sampling technique, sample size, and information recording.

It is thus important to first identify the objectives of the new implementation.

Sampling otoliths can be aimed to:

- 1) estimate indices of abundance at age and monitoring of stock structure along the time;
- 2) monitor the spatial distribution of age groups;
- 3) use length at age data to estimate growth curves;
- 4) estimate structured survey indices to be used in tuning procedures for stock assessment;
- 5) use age data to estimate, in particular, the probability reaction norm of maturation (PRNM) i.e. the indicator n. 4 of the DCF.

Monitoring of individual weight can be aimed to:

- 1) estimate length-weight relationship of target species;
- 2) estimate growth curve in weight, if also otoliths are sampled;
- 3) estimate the condition factor of the sampled species as a welfare indicator of wild population;
- 4) use weight at length to estimate the ecosystem indicator that requires individual weight (as plarge in the DCF).

Monitoring of maturity can be aimed to:

1) estimate the indices of abundance, trends and spatial distribution by life stage (e.g. spawner).

Sampling frame

A sampling protocol that enables the simultaneous fulfilment of all these objectives is preferable, in terms of costs and sampling effort.

The group decided to adopt the *length-stratified random sampling in which a fixed number of individuals are randomly collected from each length class by sex to take otoliths, individual weight and maturity stages.*

This let lean towards the ALK-like sampling, that is also the one adopted in the trawl surveys carried out in Europe, like in Evohe and IBTS.

Regarding the G1 species for which otoliths should not be sampled, the sample size for individual weight and maturity stages will be set according to a similar framework as for the species sampled for otoliths, as specified in the table 2. The precision of the body weight will be 0.1 grams.

Sampling requirements and size

The following criteria were taken into account to set the sample size for each length class:

- for the smallest size groups, that presumably contain only one age group, the number of otoliths per length class may be reduced. Conversely more otoliths per length are required for the larger length classes (see Tab. 1 as a general criterion);
- for estimating indicator n. 4, a number of 100 individuals by age class is required, mainly at maturity stages 2a, 2b, 2c and 3. Thus, to identify a criterion for balancing the number of individuals by length class, avoiding an oversampling of the juveniles, the $L_{m25\%}$ (length at 25% maturity) was chosen as a reference size (lower bound among different estimates if available) for collecting a higher number of individuals in the higher length classes, as these likely account for a larger portion of the length frequency distribution. If information of $L_{m25\%}$ is not available the criterion will be to take a higher sample if the portion of the length class is more than 5% (see Tab. 1).
- sex, maturity and individual weight data should be reported for all the target species for which otoliths and age data are collected and for all the G1 species of the MEDITS list;
- for individual weight and maturity stage samplings, the number of individuals per length class may be reduced for the smallest size groups, conversely more individuals per length are required for the larger length classes; by analogy with the second dash $L_{m25\%}$ can be a reference size for collecting a higher number of individuals. If information of L_{m25%} is not available the criterion will be to take an higher sample if the portion of the length class is more than 5% (see Tab. 1).
- targets should be set to ensure that data are collected from the entire survey area;
- participants are encouraged to collect age samples also from other commercially important species and any other species deemed important to the DCF.

The optimum number of otoliths per length class cannot be given in a universal form and the number of individual weight and maturity stage as well.

A description of the optimum sample size of age readings and length measurements dependent on a universal cost function is given in Oeberst (2000). According to Mandado and Vasquez (2011) a sample of 20 otoliths in a stratified sampling by length class was considered the optimum for a species with 30-40 length classes. Experiences gathered in the DCF for samplings of commercial catches in Italian GSAs evidenced an acceptable coefficient of variations (around 5%) when sampling 5 otoliths by sex per length class (0.5 or 1 cm depending on the species).

The analyses showed that the necessary number age readings in a length class depend on (AA.VV., 2011):

- the portion of the length class within the length frequency,

- the maximum variance of the portions of the age-groups within the length class.

The table 1 below gives for BITS (AA.VV., 2011) a criterion for establishing the minimum number of otoliths by length class.

Table 1 – Minimum number of otoliths by length class in BITS survey (AA.VV., 2011).

n •	•	
Cri	erion	

Criterion	Sample size
With probably only one age-group (age-group 0, 1)	2 to 5

With probably more than on age-group	
Portion of the length class less than 5%	10
Portion of the length class more than 5%	20

The above criteria hold also for establishing the minimum number for collecting individual weight and maturity stages data.

Therefore, the number of individuals suggested in the IBTS survey protocols (AA.VV., 2010a, b) for the same species as in MEDITS, or for species with comparable number of size classes, can be taken into consideration as a first approximation. In addition, the requirements for the calculation of the indicator n. 4 of DCF, for which a number of 100 otoliths per age class by sex can be considered suitable for the indicator estimate, should be also taken into account.

In the following table 2, a sample size is proposed for the MEDITS species coded as G1 in the new list of target species (Annex VI of this report).

Table 2 – Sample size by length class and sex proposed for otoliths, individual weight and maturity stages for the MEDITS species coded as G1 in the new list of target species. The spatial coverage is the GSA.

Species	length class	sample size	sex
Merluccius	1 cm	5 otoliths	by sex (<lm25%)< td=""></lm25%)<>
merluccius		10 otoliths	by sex (>=Lm25%)
Mullus barbatus	0.5 cm	6 otoliths	by sex (<lm25%)< td=""></lm25%)<>
		14 otoliths	by sex (>=Lm25%)
Mullus surmuletus	0.5 cm	6 otoliths	by sex (<lm25%)< td=""></lm25%)<>
		14 otoliths	by sex (>=Lm25%)
Crustaceans	1 mm	6 individuals	Juveniles ((<lm25%) of<="" or="" portion="" td=""></lm25%)>
			the length class less than 5%)
		14 individuals	by sex (>=Lm25%)
Cephalopods*	0.5 cm	6 individuals	Juveniles ((<lm25%) of<="" or="" portion="" td=""></lm25%)>
			the length class less than 5%)
		30 individuals	by sex (>=Lm25%)
Elasmobraches	1 cm	5 individuals	Juveniles ((<lm25%) of<="" or="" portion="" td=""></lm25%)>
			the length class less than 5%)
		10 individuals	by sex (>=Lm25%)

*the number of individuals per length class is increased for cephalopods taking into account the higher variability of individual weight.

After analysing the characteristics of the G1 MEDITS species and the requirements of the indicator n. 4 of DCF, *P. erythrinus* has been excluded, because the sexual hermaphrodite pattern makes the attribution to a sex from year to year uncertain.

It is expected that for the species in table 2 the number of otoliths required for the estimation of indicator n.4 in the DCF should be fulfilled.

It is recommended that otoliths, individual weight and maturity stages are collected in each haul. This would avoid autocorrelation in the sample (e.g. individuals belonging to the same school).

For example 1-2 individuals should be taken per length class and haul, or 1 fish every 10 fish per length class and haul as in the Evhoe survey. However this specific approach will be adapted to the characteristics of each GSA. Otolith are then dried stored for later age determination.

Consequently, the number of fish selected for otolith extraction, should be equal to the number of fish for which individual weight, sex and maturity stage are obtained.

For those species for which otoliths are not taken, the number of fish selected for measuring individual weight, sex and maturity stage are equal to the numbers suggested for age reading.

In some vessels or in particular weather conditions during the MEDITS survey, individual weight cannot be measured accurately and the use of frozen samples is unavoidable. Thus, it is recommended to develop conversion factors between fresh and frozen samples.

Estimates of abundance indices at age

After the age distribution is allocated to the length distribution, the age based indices are calculated. The precision of the ALK can be estimated using the method of Baird (1983) or Oeberst (2000).

In the estimates of the abundance indices at age, it is necessary to compute the average numbers at length and associated variances as a first step.

The mean stratified standardization formulas by Souplet (1996) shall be used for the computation of average numbers at length and associated variances by stratum (formulas (1) and (2) below) and for the total area (formulas (3) and (4) below):

$$\bar{x}_{k,j} = \frac{\sum_{h=1}^{H} x_{h,k,j}}{\sum_{h=1}^{H} A_{h,k}}$$
(1)

$$V(\bar{x}_{k,j}) = \frac{1}{H-1} \sum_{h=1}^{H} A_{h,k} \left(\frac{x_{h,k,j}}{A_{h,k}} - \bar{x}_{k,j} \right)^2$$
(2)

$$I_{j} = \sum_{k=1}^{K} W_{k} * \bar{x}_{k,j}$$
(3)

$$V(I_{j}) = \sum_{k=1}^{K} \frac{W_{k}^{2} S(\bar{x}_{h,j})^{2}}{\sum_{h=1}^{H} A_{h,k}} (1 - f_{k})$$
(4)

where:

 $x_{h,k,j}$ is the number of individuals in the haul *h* of the stratum *k* and length class *j*; $A_{h,k}$ is the swept area of haul *h* in stratum *k*;

 $x_{k,j}$ is the average number at length *j* in the stratum *k*;

 $V(\bar{x}_{k,i})$ is the variance of the average number at length j in the stratum k;

 W_k is the stratum weight calculated as the area of stratum k divided by the GSA area; I_i is the abundance index of the length class j;

 $V(I_i)$ is the variance of the abundance index of the length class;

 f_k is the finite population correction factor.

In a second phase, when building the age-length key, the computation of the proportions at age i per length class j and associated variances is computed as:

$$p_{i,j} = \frac{n_{i,j}}{n_j} \tag{5}$$

$$V(p_{i,j}) = \frac{p_{i,j}(1-p_{i,j})}{n_j}$$
Errore. Il segnalibro non è definito.
(6)

where :

 $n_{i,j}$ is the number of otoliths of age *i* in the length class *j*;

 n_j is the total number of otolith in the length class j;

 $p_{i,i}$ is the proportion of age *i* in the length class *j*;

 $V(p_{i,i})$ is the variance of the proportion of age *i* in the length class *j*.

In a third phase, the computation of mean numbers at age and the associated variances are computed. The mean numbers at age are given by :

$$I_{i} = \sum_{j=1}^{J} I_{j} * p_{i,j}$$
(7)

and the associated variance is:

$$V(I_{i}) = \sum_{j=1}^{J} \left[V(I_{j}) p_{i,j}^{2} + I_{j}^{2} V(p_{i,j}) + V(p_{i,j}) V(I_{j}) \right]$$
(8)

where

 I_i is the abundance index of the age class *i* and $V(I_i)$ its variance.

These computations are done by sex and the total age composition is given for each age *i* by:

$$Itot_i = Ima_i + Ife_i \tag{9}$$

its variance is:

$$V(Itot_i) = V(Ima_i) + V(Ife_i)$$
⁽¹⁰⁾

and the sampling being independent on sex the covariance is not considered.

References

- AA.VV. 2010a Manual for the International Bottom Trawl Surveys. ADDENDUM 1. IBTS Manual -REVISION VIII. The International Bottom Trawl Survey Working Group. ICES web site: http://datras.ices.dk/Documents/Manuals/Manuals.aspx
- AA.VV. 2010b ADDENDUM 2: IBTS MANUAL ON THE WESTERN AND SOUTHERN AREAS Revision III-Agreed during the meeting of the International Bottom Trawl Survey Working Group 22– 26 March 2010, Lisbon. ICES web site: http://datras.ices.dk/Documents/Manuals/Manuals.aspx
- AA.VV. 2011 Manual for the Baltic International Trawl Surveys, ADDENDUM 1: WGBIFS BITS Manual 2011. ICES web site: <u>http://datras.ices.dk/Documents/Manuals/Manuals.aspx</u> AA.VV. **NS-IBTS indices calculation procedure** ICES web site:

http://datras.ices.dk/Documents/Manuals/Manuals.aspx

Baird, J.W. 1983. A method to select optimum numbers for aging in a stratified random approach. *In* Sampling commercial catches of marine fish and invertebrates. *Edited by* W.G. Doubleday and D. Rivard. Can. Spec. Publ. Fish. Aquat. Sci. **66**: 161–164.

Mandado M., Vázquez A. 2011. On otoliths sampling. NAFO SCR Doc. 11/023: 9pp.

- Oeberst R. 2000. An universal cost function for the optimization of the number of age readings and length measurements for Age-Length-Key-Tables (ALKT). Arch. Fish. Mar. Res. 48(1): 43–60.
- Souplet A. (1996). Calculation of abundance indices and length frequencies in the MEDITS survey. In: J. A. Bertrand et al. (eds), Campagne internationale du chalutage démersal en Méditerraneé. Campagne 1995. EU Final Report, Vol. III.

XV. TM list of species codes

TAXONOMIC LIST OF THE MEDITERRANEAN to be used in the trawl surveys Name of the list: TM

The present list is destined to code the marine species encountered in the Mediterranean. It has been built following the principle used in the Nordic Code Centre (Stockholm). For most of the species the codes are identical to those proposed by the NCC. However some species can be coded differently. In addition numerous Mediterranean species are not included in the NCC code and have been added. So the present list is specific. It has to be referred as the TM list (Taxonomic list not only Faunistic, FM list).

The first fish list has been established according to the following work:

Hureau J.-C. et Th. Monod (réd.), 1973. Catalogue des poissons de l'Atlantique du nord-est et de la Méditerranée. Unesco, Paris, Vol I, xxii + 683 p.; vol II, 331 p. [réimpression comprenant le *Supplément 1978*, par E. Tortonese et J. -C. Hureau (réd), en 1979]. The reference of the species following this work is reported as "C" (for Clofnam) in the column "Source" with number which is attributed to this species in the Catalogue in the column "Reference".

This list has been increased with reference to the following works:

Fisher W., M.L., Bauchot et M. Schneider (rédact.), 1987. Fiches FAO d'identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Volume I. Végétaux et Invertébrés. Volume II. Vertébrés. Publication préparée par la FAO, résultat d'un accord entre la FAO et la Commission des Communautés Européennes (Projet GCP/INT/422/EEC) financée conjointement par ces deux organisations. Rome, FAO, 1530 p.

The reference of the species coming from this book are reported as "F" (for FAO) in the "Source" with the reference given to this species. Important reference are also the three volumes of FNAM: Whitehead *et al.*, 1984, 1986 (W).

For most of the Invertebrates, the species have been named according to the following works:

- Zariquiey Alvarez R., 1968. Crustaceos decapodos ibéricos. Invest. Pesq. 32, 510 p.
- Riedl R., 1963. Fauna und flora der Adria. Paul Parey Ed. 640 pp.

The references to these works are mentioned as Z and R respectively in the column "Source" (see other references below).

Until 2011 the source file of this list was located at the "Ecologie et modèles pour l'halieutique" department of Ifremer in Nantes.

In 2012 the list has been review by the Società Italiana di Biologia Marina (prof. Giulio Relini and dr. Alessandro Mannini) following the subdivision in the following main categories:

A fishes, B Crustaceans (Decapoda, Cirripedia, , Eufausiacea, Isopoda, Stomatopoda), C Cephalopods, D Other commercial (edible) species, E Other animal species but not commercial (not edible) for this classification the main references is Fisher *et al.* 1987, *Fiches FAO* d'*identification* des *espèces* pour les *besoins* de la *pêche. Méditerranée et mer Noire.* mimeo

Six more categories were added:

- G = portions or products of animal species (shell debris, eggs of gastropods, selachians, etc.);

- H = portions or products of vegetal species (e.g. leaves of sea grasses, of terrestrial plants, etc.);

- M = Mammalia (mammals);
- O = Aves (birds);
- R = Reptilia (turtles);
- V = Plantae (vegetals).

The categories A, B, D E were sub-divided in the following subcategories:

- -Aa = Fish Agnata;
- -Ae = Fish Chondrichthyes;
- Ao = Fish Osteichthyes;
- Bam = Amphipoda;
- Bci = Cirripedia;
- Bis = Isopoda;
- Beu = Euphausiacea;
- Bst = Stomatopoda
- Dec/ Eec = Echinodermata;
- Dmb/Emb = Mollusca Bivalvia;
- Dmg/Emg = Mollusca Gastropoda;
- Dmo/Emo = Mollusca Opisthobranchia;
- Dtu/ Etu = Tunicata;
- Ean = Annellida;
- Eba = Brachiopoda;
- Ebr = Bryozoa;
- Ech = Echiura;
- Ecn = Cnidaria;
- Ect = Ctenophora;
- Ehi = Hirudinea;
- Emp = Polyplacophora;
- Ene = Nemertea;
- Epo = Polychaeta;
- Epr = Priapulida;
- Esc = Scaphopoda;
- Esi = Sipuncula;
- Esp = Porifera (sponges).

In addition the following codes were added (column 'Remarks' in the list)

- AL = alien species
- Δ = species not yet recorded in the Italian Seas.
- $\Delta \Delta$ = species not yet recorded in the Mediterranean Sea

CODLON represents the Length classes code: m = 1 mm; 0 = 0.5 cm; 1 = 1 cm;

In the column "GSAs" are reported the GSAs in which the taxon was recorded.

In the column 'Year' of the table the year in which the species was recorded for the first time is reported,

Other new codes for new species could be added.

It was decided to not consider species lower than 1 cm like Isopoda, Amphipoda, small Polychaets etc. For the moment the species listed in the previous version (Relini *et al.*, 2008) are maintained.

It was decided for the moment to maintain, when applicable, two codes for one species and to avoid the presence of the same code for different genus (the first 4 letters of the species code). The species (taxon) codes included in the data tables are based on the TM list. So, to maintain the consistency of the data series, they cannot be changed even if a species name is reviewed.

The codes are reported in alphabetical order in the list.

Codes of source column are:

- C = Clofnam (Hureau and Monod, 1973);
- F = Fisher *et al.*, 1987;
- G = Golani *et al.*, 2002;
- P = Guerra, 1992;
- R = Riedl 1968 (Italian editions 1991);
- T = Tortonese, 1965;
- Y = Galil *et al.*, 2002;
- Z = Zariquiey 1968.

All the problems dealing with the list and in particular introduction of new species will be managed by the following WG: Giulio Relini (leader), Enric Massuti, Angelique Jadaud, Porzia Maiorano and Eugenia Lefkaditou. Proposals for new species will be sent to Giulio Relini (See **Annex V**).

To know the valid scientific name of species present in Italian seas the main reference is the checklist of Fauna and Flora of Italian seas (Relini, 2008; 2010). WoRMS (World Register of Marine Species) was checked for updating the scientific name, when applicable.

Regarding the alien species the recent papers by Galil (2011) and Zenetos et al. (2012) have been taken into account.

References

- FISHER W., BAUCHOT M.L., SCHNEIDER M. (EDS) (1987) Fiches FAO d'identification des espèces pour les besoins de la pèche. Rév. 1. Méditerranée et mer Noire. Voll. I et II. Project GCP/INT/422/EEC. FAO, Rome: 1530 pp.
- GALIL B.S. (2011) The alien crustaceans in the Mediterranean: an historical overview. In: Galil B.S., Clark P.F., Carlton J.T. (eds), *In the wrong place alien marine crustaceans: distribution, biology and impacts.* Springer Series in Invasion Ecology, 6. Springer Verlag, Berlin: 377-401. <u>http://dx.doi.org/10.1007/978-94-007-0591-3_13</u>
- GALIL B.S. FROGLIA C., NOËL P.Y. (2002) Crustaceans: decapods and stomatopods. In: F. Briand (ed), CIESM Atlas of Exotic Species in the Mediterranean. Vol. 2. CIESM Publishers, Monaco: 192 pp.
- GOLANI D., ORSI RELINI L., MASSUTI E., QUIGNARD J.P. (2002) Fishes. In: F. Briand (ed), CIESM Atlas of Exotic Species in the Mediterranean. Vol. 1. CIESM Publishers, Monaco: 256 pp. update 2013. <u>http://www.CIESM.org/Atlas/appendix1.html</u>
- GUERRA A. (1992) Mollusca Cephalopoda. In: Ramos M.A. *et al.* (eds), *Fauna Iberica. Vol. 1*. Museo Nacional de Ciencias Naturales. CSIC, Madrid: 327 pp.
- HUREAU J.C., MONOD T. (1973) CLOFNAM Vol I., UNESCO.
- RELINI G. (ED) (2008) Checklist della flora e della fauna dei mari italiani / Checklist of the flora and fauna in Italian seas. Part I. *Biol. Mar. Mediterr.*, **15** (Suppl. 1): 1-385 +49.
- RELINI G. (ED) (2010) Checklist della flora e della fauna dei mari italiani / Checklist of the flora and fauna in Italian seas. Part II. *Biol. Mar. Mediterr.*, **17** (Suppl. 1): 387-828 +68.
- RELINI G., CARPENTIERI P., MURENU M. (EDS) (2008) Manuale di Istruzioni MEDITS / MEDITS Instruction Manual. *Biol. Mar. Mediterr.*, **15** (Suppl. 2): 1-78.
- RIEDL R. (1991) Fauna e Flora del Mediterraneo. Franco Muzzio Ed.: 777 pp.

TORTONESE E. (1965) - *Echinodermata. Fauna d'Italia. Vol. VI.* Calderini Ed., Bologna: 419 pp.

WHITEHEAD P.J.P., BAUCHOT M.L., HUREAU J.C., NIELSEN J., TORTONESE E. (1984) - Poissons de l'Atlantique du nord-est et de la Méditerranée. Vol. I. UNESCO, Paris: 510 pp.

- WHITEHEAD P.J.P., BAUCHOT M.L., HUREAU J.C., NIELSEN J., TORTONESE E. (1986) - Poissons de l'Atlantique du nord-est et de la Méditerranée. Vol. II et III. UNESCO, Paris: 511-1473.
- WORMS (EDITORIAL BOARD) (2015) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2016-03-23.

ZARIQUIEY ALVAREZ R. (1968) - Crustaceos decapodos ibericos. *Invest. Pesq.*, **32**: 510 pp. ZENETOS A COEAS S. MORDI C. DOSSO A WOLANTI D. CARCIA PASO I.E.

ZENETOS A., GOFAS S., MORRI C., ROSSO A., VIOLANTI D., GARCIA RASO J.E., CINAR M.E., ALMOGI-LABIN A., ATES A.S., AZZURRO E., BALLESTEROS E., BIANCHI C.N., BILECENOGLU M., GAMBI M.C., GIANGRANDE GRAVILI C., HYAMS-KAPHZAN O., KARACHLE P.K., KATSANEVAKIS S., LIPEJ L., MASTROTOTARO F., MINEUR F., PANCUCCI-PAPADOPOULOU M.A., RAMOS-ESPLA A., SALAS C., SAN MARTIN G., SFRISO A., STREFTARIS N., VERLAQUE M. (2012) - Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways.

TM MEDITS list (2017 updated)

The TM list updated to 2017 is available in electronic format at the following web site: <u>http://www.sibm.it/MEDITS%202011/principale%20project.htm</u>

XVI - Technical specifications and quality check of the Medits gear

by Antonello Sala (ISMAR, CNR, Italy).

This paper is presented for consideration by MEDITS Coordination group and may contain unpublished data, analyses, and/or conclusions subject to change. Data contained in this paper should not be cited or used for purposes other than the work of the MEDITS programme, or their subsidiary bodies without the permission of the originators/owners of the text.

XVI.1 - Guidelines for the gear quality control

XVI.1.1 - Towing cable

Check/measure with a calliper the warp diameter. It is important as the warp length/depth relationship must be in agreement with the table in Fig. 7 of this Handbook.

XVI.1.2 Otterboard

Assuming that the otterboard is the Morgere WS 8 type, measurement of the otterboard length and height can be easily carried out ashore, they must be 2050 and 1250 mm respectively. See Figure 6 of this Handbook for the rigging, check the upper- and lower-backstrops they must be 65 cm, while the middle chain must be 160 cm. If you have to shorten the chain of one or some links in only one otterboard, it is recommended you replace the entire backstrops in both the otterboards.

XVI.1.3 Bridles and combination rope

To regularly check the respect of the protocol for all the <u>components that could be altered by the</u> <u>use</u>. For example the last protocol adopted provides that the upper- and lower-bridles have the same length. But because the lower one is a combination rope, it is subject to lengthen after some period of work at sea. The same is not true for the upper bridle which is made of steel. The result is that, after a certain period of time, the lower bridle could become longer than the upper one. The resulting extension affects the gear behaviour by decreasing the vertical net opening and increasing the bottom contact.

See Figure 2 of this Handbook. The combination rope (100 or 150 m and the lower bridle 29 m) is made of two parts: an external in PP and an internal part in steel. The nominal outer diameter should be 32 mm of PES 4 strands (see Figure 2) having an internal part (not defined before creating the current manual) of a <u>metallic cross-section</u> of approx. 36 mm². As also the internal diameter of the current combination ropes must be standardized, a check with your local company producer/manufacturer is required, take notes and communicate the values to the MEDITS coordinator. It is the internal part that is relevant for the weight of the rope, and the weight might affects the trawl openings. In the future such information will be included in the Handbook revision.

XVI.1.4. Floats

Detailed information on the floats is provided in the text of this manual.

The main checks are:

- check there are 40 floats on the headline;
- their diameter should be of around 20 cm;
- the 40 floats should be distributed along the headline:
 - \blacktriangleright from each wing tip, one float every 1.50 m for 5 times;
 - > one pair of floats every 1.50 m on the whole remaining length;
 - ▶ in the headline (bosom) a small adjustment of the spacing might be necessary.

As specified at the section 1.1 of this Handbook, the individual buoyancy of the floats should

be 2.7 kgf (\pm 5%), the total buoyancy of the 40 floats being around 108 kgf (\pm 5%).

XVI.1.5. Bolchline, ballast chain

Bolsh- or bolchline. Rope attached along edge of lower wings and bosom netting (Figure XVI.1.1) for securing in bights to fishing line (ref. Multilingual dictionary of fishing gear, 1992). The bolchline and footrope must have the same length, that is 40 m, and can be measured as showed for the headline. The footrope is made of stainless steel covered by a twisted polypropylene (PP) rope and is connected in bights to the bolchline through metal rings. On the lower side of the footrope, the ballast chain (10 mm, 2 kg/m) is connected in bights to the footrope (Figure 3 of this Handbook).

The main checks required are:

- distance between the bolchline and the footrope must be 5 cm;
- the bightings between the bolchline and the footrope must have a distance of 50 cm;
- ballast chain has bightings every 17 cm and the inner height must be 8 cm;
- check (with the company manufacturer/provider) that the ballast chain is of 2 kg/m.

As the Operative Units have different number of hauls to perform each cruise and the differences in the ballast chain might affect the performance of the GOC73, it is highly recommended to have a new ballast chain at the beginning of every cruise in order to avoid any wear and tear effect on the chain.

Practical example for the calculation of the total ballast chain weight by respecting the standard MEDITS requirements:

Footrope length	40 m
Bight distance	17 cm (0.17 m)
Number of bights	40 / 0.17 = 235
Chain length for each bight	25.72 cm (e.g. application of the arc formulae)
Total ballast chain length	$235 \times 25.72 = 6044 \text{ cm} (60.44 \text{ m})$
Total ballast chain weight	60.44 x 2 kg/m = 120.88 kg

The rigging of the ballast chain is important to keep constant the overall ballast chain weight. An example in the following table shows the effect of a small variation in the bight distance/height on the chain weight (e.g. *blue is the correct value*).

Bights distance [cm]	20	20	17	17
Bights height [cm]	8	10	8	10
Total chain length [cm]	55.30	62.80	60.44	70
Total chain weight [kg]	110	125	120	140

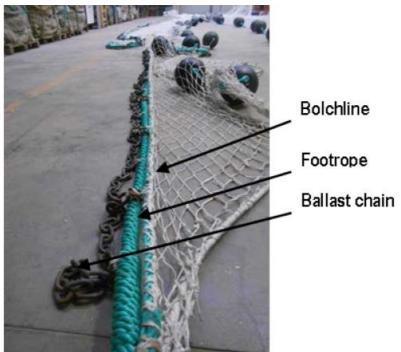


Figure XVI.1.1 - Particular of the bolchline, footrope and ballast chain in the GOC73.

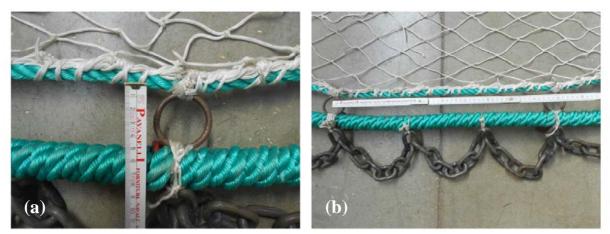


Figure XVI.1.2. In (a) measurement of the distance between the bolchline and the footrope (5 cm) and (b) between the bightings on the bolchline (50 cm).

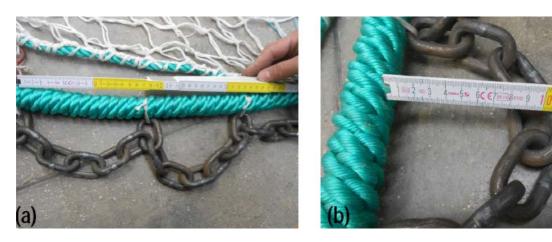


Figure XVI.1.3. In (a) Measurement of the distance between ballast chain bights (17 cm) and (b) of the inner height of the chain bightings (8 cm). Having such rigging the total weight of the chain must be around 120 kg. (c) supplementary chain (only one chain) of 15 kg (around 6.50 m and a diameter of 10 mm).

XVI.1.6. Headline, footrope and sideline

The main checks are:

- the groundrope (40 m) must be 4.30 m longer than the headline (35.70 m);
- the length of the groundrope and headline must be compared. The length is adjusted by means of the adjustment chain on the groundrope.

Both the headline and the groundrope must be measured by dividing the rope in three parts. Having Figure 1 of this Handbook as reference, for the headline we have 2.90 m (b) at the bosom, two pieces of 10.40 m (c) and 6.00 m (d) for a total of 35.70 m. While for the footrope, we have 2.90 m (g) at the bosom, two pieces of 12.65 m (h) and 5.90 m (i) for a total of 40.0 m. See Figure XVI.1.5, Figure XVI.1.6 and Figure XVI.1.8.

The weighting chain (*ballast chain*) of 120 kg (Nr. 3×40 m) should be secure to the footrope every 17 cm (with a hanging height of at most 8 cm). A supplementary chain (only one chain) of 15 kg (around 6.50 m and a diameter of 10 mm) should in addition been secured symmetrically on both parts of the belly bosom in the same way as the first one (garland of 17 cm in length).

Figure XVI.1.4. Measurement of the headline at the bosom level. We measured 1.46 m, which multiplied by two is 2.92 m.

Figure XVI.1.5. Measurement of headline at wings. The measurement should start from the end of the bosom (see the transversal seams) to the end of the wing. The headline in this part should be 10.40 m (c).

Figure XVI.1.6. Measurement of headline at wing tips. The measurement should start from the end of the wing to the end of the line. The headline in this part should be 6.00 m (d).

XVI.1.7. Trawl netting

Referring to the GOC73 acronyms in Figure XVI.1.8, the nettings in the upper-panel have been defined with the letter A, while the nettings in the side-panels with the letter B and with the letter C the nettings in the lower-panel. Furthermore, the number after the letters define the level of each netting: *e.g.* same number means same level and, as it can be seen in the GOC drawing of Figure XVI.1.8, the nettings with the same numbers have the same height.

The height of a netting (H) is calculated by multiplying the stretched mesh size (MS) of the netting by the number of meshes in height:

(NH): H=MSxNH.

In general the design of any trawl is conceived to distribute the net drag not homogeneously among the upper- (UP), lower- (LP) and side-panel (SP). In order to guarantee a correct trawl bottom contact, the UP has more drag than the LP, so that during towing the UP is more stretched while the LP is slacked. Despite the equal longitudinal number of meshes both in the UP and LP, the unequal drag distribution may cause a different stretching of the twines, resulting in a different effective panels length. For this reason, prior to any field cruise, all the nettings need to be measured in the longitudinal axis (N-direction), without considering seams. Normally, the different action of the drag on the three panels will cause that the upper nettings are more likely to be stretched; the lower nettings tend to shrink, and the side nettings are almost in a neutral situation.

Considering the schematic view of the GOC73 drawing with acronyms on pieces of netting provided in Figure XVI.1.8, the side nettings B6/B7/B8/B9 must be considered for the reasons abovementioned as reference nettings to be compared on with the respective upper-(A6/A7/A8/A9) and lower-nettings C6/C7/C8.

Before proceeding in explaining the procedures for the netting checks, it is important to define the transverse- and the longitudinal-seam meanings (Figure XVI.1.7).

The **transverse seams** join two nettings in the transverse direction (T), they are the references for the measurement of the netting height. While the **longitudinal seams** (strengthening lacing) join two nettings in the longitudinal direction (N) and they are rows of meshes laced together in order to strengthen the netting.

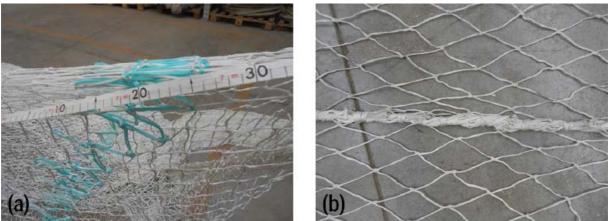


Figure XVI.1.7. The transverse seams (a) join two nettings in the transverse direction (T), they are the references for the measurement of the netting height. The longitudinal seams (b) or strengthening lacing join two nettings in the longitudinal direction (N). They are rows of meshes which may be laced together in order to strengthen the netting.

The main check is to check that all the nettings at the same level have the same height. To speed up simplify the proceedure step-by-step for each netting from B6 to B8:

- 1. calculate the netting height of the side panel (B6): H=NHxMS, where NH is the number of meshes in height (N-direction) and MS is the stretched mesh size. For B6 is then: H(B6)=60x120=7200 mm.
- 2. After having verified the coherence of the height of the side netting (B6) with the design of the GOC 73 (Figure 1 of this Handbook), identify the beginning and the end of the netting you have to compare with (A6) by looking at the transverse seams and then align the transverse seams of A6 with those of B6. Always align the center part of the nettings and not the lateral part. To facilitate the comparison of the netting heights, you have another possibility, that is measuring with a meter

both the upper- and the lower- netting avoiding the abovementioned seams alignment procedure;

- 3. In case of differences we have two options:
 - a. change the whole lower- or upper- netting. It allows to restore the original netting properties and it is the best solution with wear-and-tear nettings or when nettings have been fouled by obstructions on the sea bed. But it is more expensive than net mending;
 - b. remove or add rows of meshes in the upper- or lower- panel (net mending). It is cheaper than replacing with a new netting (recommended only if a netting has been mended 1-2 times), but it results in a changing of the net drawing.

The total height of codend and extension nettings (A1+A2, see Figure XVI.1.1), must be equal to the length of the selvedge rope (line *a* in Figure XVI.1.1). Then it must be H(A2+A1)=a=40x100+20x250=9000 mm.

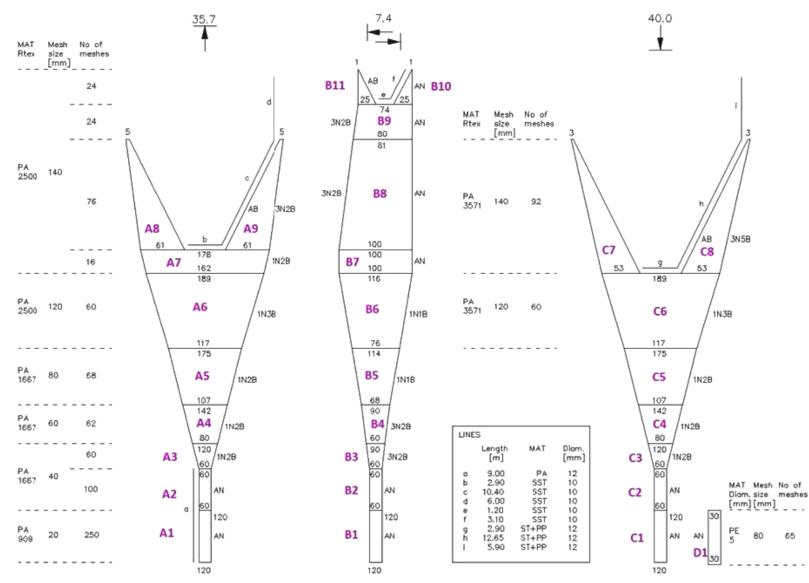


Figure XVI.1.8. Design of the GOC 73 trawl used for the MEDITS survey, with acronyms specified for each netting.

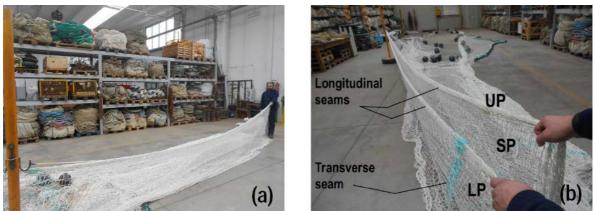


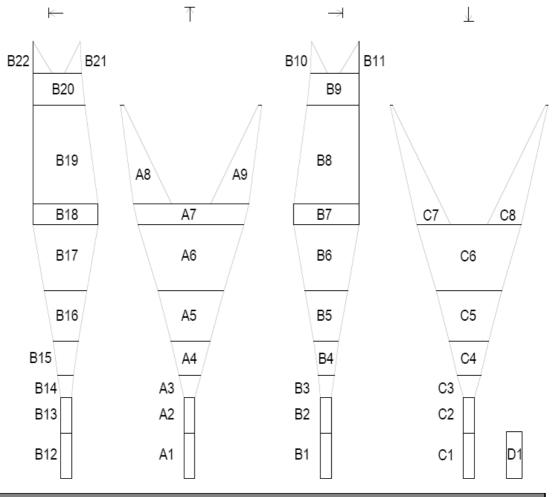
Figure XVI.1.9. Identification of the beginning and the end of each netting by looking at the transverse seams (a) and alignment of the transverse seams (b).

XVI.2 - Quality time-0 control checklist

Time-0 checks are necessary both with a new trawl and when a Medits gear is measured for the first time (e.g. whenever measured).

The following modules have been developed in order to be printed out and form a sort of 'record book' for the quality certification of each Medits gear (e.g. GOC73, otterboard, and rigging parts).

It is recommended that each Medits trawl and otterboard are classified with the following rules of codification:

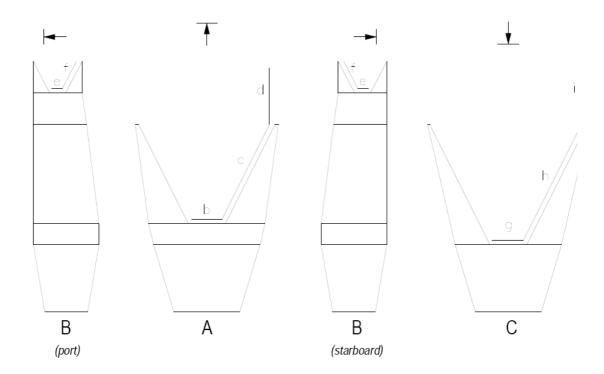

Trawl: GOC73_OUXXX_YYYY_NN Otterboard: WHS8_OUXXX_YYYY_NN

where OUXXX stands for the Operative Unit number; YYYY is the year of trawl purchasing; and NN is an yearly progressive serial number (e.g. reset to 01 each year).

General information of the MEDITS gear inspection table

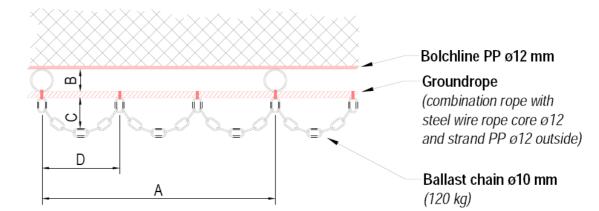
Operative Unit	
Inspection Nr.	
Date of inspection	
Name of the control operator	
GOC73 trawl code	
Otterboard code	

Top panel, Lower panel, Side panel (port), Side panel (starboard)

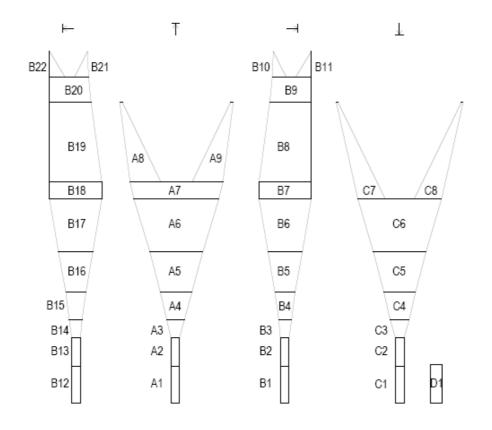

Top panel										
ID	Mesh size [mm]		Netting Width				Netting Height			
Netting	Nom	Eff	Mesh F	ore (Nr)	Mesh	Aft (Nr)	(N	r)	[m]
	NOM	LII	Nom	Eff	Nom	Eff	Nom	Eff	Nom	Eff
A1	20		120		120		250		5.00	
A2	40		60		60		100		4.00	
A3	40		120		60		60		2.40	
A4	60		142		80		62		3.72	
A5	80		175		107		68		5.44	
A6	120		189		117		60		7.20	
A7	140		178		162		16		2.24	
A8	140		5		61		76		10.64	
A9	140		5		61		76		10.64	

Lower par	Lower panel												
ID Netting	Mesh size [mm]		Netting Width				Netting Height						
	Nom	Eff	Mesh F	ore (Nr)	Mesh	Aft (Nr)	(N	r)	[m]			
		Nom	Eff	Nom	Eff	Nom	Eff	Nom	Eff				
C1	20		120		120		250		5.00				
C2	40		60		60		100		4.00				
C3	40		120		60		60		2.40				
C4	60		142		80		62		3.72				
C5	80		175		107		68		5.44				
C6	120		189		117		60		7.20				
C7	140		3		53		92		12.88				
C8	140		3		53		92		12.88				

Side pane	l (port)										
ID	Mesh size [mm]			Netting Width				Netting Height			
Netting	Nam	Eff	Mesh Fo	ore (Nr)	Mesh	Aft (Nr)	(N	lr)	[m]	
	Nom	EII	Nom	Eff	Nom	Eff	Nom	Eff	Nom	Eff	
B12	20		120		120		250		5.00		
B13	40		60		60		100		4.00		
B14	40		90		60		60		2.40		
B15	60		90		60		62		3.72		
B16	80		114		68		68		5.44		
B17	120		116		76		60		7.20		
B18	140		100		100		16		2.24		
B19	140		81		100		76		10.64		
B20	140		74		80		24		3.36		
B21	140		1		25		24		3.36		
B22	140		1		25		24		3.36		

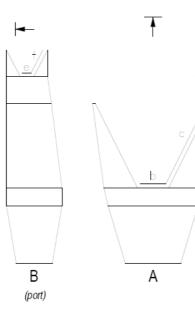

Side pane	Side panel (starboard)												
ID	Mesh size [mm]			Net Wie	ting dth		Netting Height						
Netting	Nam	Eff	Mesh Fo	ore (Nr)	Mesh	Aft (Nr)	(N	lr)	[m]			
	Nom		Nom	Eff	Nom	Eff	Nom	Eff	Nom	Eff			
B1	20		120		120		250		5.00				
B2	40		60		60		100		4.00				
B3	40		90		60		60		2.40				
B4	60		90		60		62		3.72				
B5	80		114		68		68		5.44				
B6	120		116		76		60		7.20				
B7	140		100		100		16		2.24				
B8	140		81		100		76		10.64				
B9	140		74		80		24		3.36				
B10	140		1		25		24		3.36				
B11	140		1		25		24		3.36				

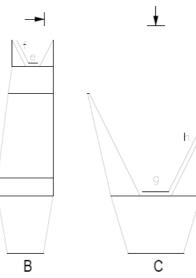
Lines (Headline, sidelines, bolchline, footrope)


Line	s (he	adliı	ne, sidelir	nes, bolc	hline, foc	otrope)				
ID Panel	linac	63	Mate	erial	Diamet	er (mm)		Lengt	h [m]	
ID P	. <u>e</u> 		Nom	Eff	Nom	Eff	N Port	om Starboard		ff Starboard
		b	Steel		10		2	.90		
A	P Headline		Steel		10		10.40	10.40		
			Steel		10		6.00	6.00		
B (port)	line	е	Steel		10		1.20			
B (p	Sideline	f	Steel		10		3.10	3.10		
B (starboard)	ine	е	Steel		10		1	.20		
B (start	Sideline	f	Steel		10		3.10	3.10		
	a	g	PP		12		2	.90		
	Bolchline	h	PP		12		12.65	12.65		
с	B	i	PP		12		5.90	5.90		
	g		Steel + PP		36		2	2.90		
	Footrope	h	Steel + PP		36		12.65	12.65		
		i	Steel + PP		36		5.90	5.90		

Floats												
ID Float		Nr	Diamet	er (mm)	Distance [m]							
ID Float	Nom	Eff	Nom	Eff	Nom	Eff						
1	1		200		1.5							
2	1		200		1.5							
3	1		200		1.5							
4	1		200		1.5							
5	1		200		1.5							
6	2		200		1.5							
7	2		200		1.5							
8	2		200		1.5							
9	2		200		1.5							
10	2		200		1.5							
11	2		200		1							
12	2		200									
13	2		200									
14	2		200									
15	2		200									
16	2		200		1.5							
17	2		200		1.5							
18	2		200		1.5							
19	2		200		1.5							
20	2				1.5							
21	1		200		1.5							
22	1		200		1.5							
23	1		200		1.5							
24	1		200		1.5							
25	1		200		1.5							

Groundgear		
Digging	Measu	re [cm]
Rigging	Nom	Eff
A	51	
В	5	
с	8	
D	17	
Ballast chain	Nom	Eff
Туре	Genovese	
Diameter [mm]	10	
Pitch [mm]	40	
Linear density [kg/m]	2	
Total weight [kg]	120	

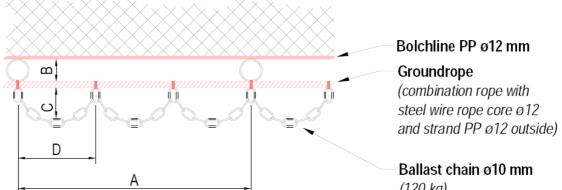

XVI.3. Quality periodic/annual control checklist and gear maintenance



Top panel					Lower par	nel			
ID Netting	Mesh size [mm]		Netting Height [m]		ID	Me: size (Netting Height	
ib Netting					Netting			[n	n]
	Nom	Eff	Nom	Eff	Eff	Nom	Eff	Nom	Eff
A1	20		5.00		C1	20		5.00	
A2	40		4.00		C2	40		4.00	
A3	40		2.40			┟╴╴╴╸┙			
A4	60		3.72		C3	40		2.40	
 A5	80		5.44		C4	60		3.72	
 A6	120		7.20		C5	80		5.44	
A7	140		2.24		C6	120		7.20	
A8	140		10.64		С7	140		12.88	
A9	140		10.64		C8	140		12.88	

Side pane	l (port)				Side panel <i>(starboard</i>)						
ID	Me size (Netting Height		ID	Me size (Netting Height			
Netting	Nom	Eff	[n Nom	n] 	Netting	Nom	Eff	[mr Nom	1] Eff		
B12	20		5.00		B1	20		5.00			
B13	40		4.00		B2	40		4.00			
B14	40		2.40		B3	40		2.40			
B15	60		3.72		B4	60		3.72			
B16	80		5.44		B5	80		5.44			
B17	120		7.20		B6	120		7.20			
B18	140		2.24		B7	140		2.24			
B19	140		10.64		B8	140		10.64			
B20	140		3.36		B9	140		3.36			
B21	140		3.36		B10	140		3.36			
B22	140		3.36		B11	140		3.36			

d



(starboard)

92

Lines (headline, sidelines, bolchline, footrope)							
ID Panel	Lines		Length [m]				
ID P			N	om	Eff		
			Port	Starboard	Port	Starboard	
		b	2	.90			
A	Headline	с	10.40	10.40		!	
	4	d	6.00	6.00			
B (port)	Sideline	е	1	20			
B (p	Side	f	3.10	3.10]	
B (starboard)	e line		1	20			
B (starl	Sideline	f	3.10	3.10			
			2	.90			
	Bolchline	h	12.65	12.65			
c		i	5.90	5.90			
	Footrope	g	2.90				
		h	12.65	12.65			
		i	5.90	5.90			

Floats						
ID Float		Nr	Distance [m]			
DTHOUT	Nom	Eff	Nom	Eff		
1	1		1.5			
2	1		1.5			
3	1		1.5			
4	1		1.5			
5	1		1.5			
6	2		1.5			
7	2		1.5			
8	2		1.5			
9	2		1.5			
10	2		1.5			
11	2					
12	2					
13	2					
14	2					
15	2					
16	2		1.5			
17	2		1.5			
18	2		1.5			
19	2		1.5			
20	2		1.5			
21	1		1.5			
22	1		1.5			
23	1		1.5			
24	1		1.5			
25	1		1.5			

Groundgear					
Diaging	Measure [cm]				
Rigging	Nom	Eff			
A	51				
В	5				
С	8				
D	17				
Ballast chain	Nom	Eff			
Туре	Genovese				
Diameter [mm]	10				
Pitch [mm]	40				
Linear density [kg/m]	2				
Total weight [kg]	120				

(120 kg)

XVI.4. - Glossary of terms and references to the acronyms used in the current Medits Handbook

AB direction (**AB**). Direction parallel to a rectilinear sequence of mesh bars, each from adjacent meshes.

Bar cut (B). A cut parallel to a line of sequential mesh bars, each from adjacent meshes, and severing one or more bars.

Beam. Wood or steel spar which holds the net of a beam trawl open horizontally.

Beam trawl. The horizontal opening of this trawl is provided by a beam, made of wood or metal, which may be 10 long or more. Beam trawls are used mainly for flatfish and shrimp fishing.

Belly. Section of panel between wings and extension piece of the trawl.

Body. The centre which is usually the main part of a net or section of a trawl.

Bottom otter trawl. Trawl towed by a single boat. Its horizontal opening is obtained by the use of otterboards which are relatively heavy and equipped with a steel sole designed to withstand rough contact with the bottom.

Bottom trawl. Trawl designed and rigged to work near the bottom. According to the type used, one may distinguished: low opening trawls (specially designed for the capture of demersal species) such as beam trawls and shrimp, sole or nephrops trawls; and high opening trawls, suitable mainly for the capture of the semi. demersal or pelagic species.

Codend. Netting bag made up of one or more panels (pieces of netting) of the same mesh size attached to one another along their sides in the axis of the trawl by a seam where a side rope may also be attached.

Double rigging (double rig). In certain cases, the trawler can be specifically rigged with outriggers to tow two (or even four) trawls at the same time.

Dredge. An apparatus usually in the form of an oblong iron frame with an attached bag net.

Extension. Means the untapered section, made of one or more panels, between the trawl body and the codend.

Float. A buoyant unit used to give lift or to mark the position of a net, or both.

Headline (headrope). The principal upper frame rope of a net to which the netting is attached.

Horizontal cut (T). A cut parallel to the general course of the netting yarn just beyond the knots.

Lower panel. All the net sections of the lower part of the trawl net.

Lower wing. Net section extending forward from one side of the belly and usually joined to the adjacent top wing (two panel trawls) or adjacent side wing (four panel trawls).

Midwater otter trawl (pelagic one boat trawl). Trawl towed by a single boat. The horizontal opening of the net is controlled by otterboards, usually of a hydrodinamic shape, and which normally do not touch the ground.

Midwater pair trawl. Towed by two boats, thus ensuring the horizontal opening of the net, this net is designed and rigged to work in midwater.

Midwater trawl (pelagic trawl). Trawl usually much larger then bottom trawl, designed and rigged to work in midwater, including surface water. The front net sections are very often made with very large meshes or ropes, which heard the fish schools toward the net aft section. They may be towed by one or two boats.

Otterboard (trawl board, trawl door, board, door). Shearing device, two of which hold open horizontally the wings and mouth of a trawl.

Otter twin trawls. Gear comprising two identical trawl nets ("twin") working together, opened horizontally by a single pair of otterboards. The inner wings are attached to a sledge towed simultaneously with the otterboards from a common crowfoot.

Pennant. Handling wire connecting warp to bridle and allowing the bridle to by-pass the otterboard when shooting or hauling the gear.

Piece of netting. A section of netting consisting of a uniform size mesh

Pair trawling. Method in which the trawl is towed by two boats of similar power. The separation of the boats controls the opening of the net.

Rig. The process of fitting the necessary ropes and accessories so as to make a net ready for fishing.

Side wing. Lower or upper wing of side panel of a four panel trawl

Single rig. Gear consisting of a single trawl net.

Strengthening bag. A cylindrical piece of netting completely surrounding the codend of the trawl and which may be attached to the codend in intervals. It shall have at least the same dimensions (length and width) as the part of the codend to which it is attached.

Suberkrub otterboard. All steel cambered midwater otterboard with vertical aspect greater then its horizontal aspect.

Sweep. The rope usually of wire or combination rope, between otterboards and net.

Top panel. All the net sections of the upper part of the trawl.

Top wing (upper wing). Net section extending forward from one side of the square and usually joined to the adjacent lower wing (two panel trawls) or adjacent side wing (four panel trawls).

Vertical cut (**N**). A cut at right angles to the general course of the netting yarn just beyond the knots.

Warp. Long flexible steel rope connecting vessel to the trawl gear.

Wing. Tapered net section extending forward from one side of the main body of the net.

XVI.5. - List of gear metrics

In order to define main geometrical characteristics of the fishing gear, major gear metrics are listed below.

Lengths of the net. It Is the overall distance, along the longitudinal axis between, between the wings and the extension. When not specified, the codend is not included.

Headline length. It is the length of the upper combination rope, usually expressed in meters.

Footrope length. It is the length of the lower combination rope, usually expressed in meters.

Mouth horizontal opening, it is the horizontal distance between the ends of the headline.

Mouth vertical opening. It is the vertical distance (height) of the headline bosom from the ground.

Fishing circumference. Is the length, in meters, of the circumference obtained considering a vertical section of the net at the footrope bosom.

Door length. It is the horizontal overall distance between the forward and aft edges of the otterboard. On a cambered otterboard the length is measured along a direction parallel to the shoe.

Door weight. The weight, as usually indicated by manufacturers, is the weight in air. It should be noted that, when considering otterboard performance, the effective weight of the otterboard is the weight in water.

Horizontal door spread. It is the distance between the otterboards measured along a perpendicular at the trawling direction.

XVII - Protocol for monitoring Marine Litter on a voluntary basis

Proposal for collecting data on litter during MEDITS trawl surveys

Fabio Fiorentino, Evgenia Lefkaditou, Angelique Jadaud, Pier Luigi Carbonara, Giuseppe Lembo and Francois Galgani

This proposal is based on the document "Procédure pour l'observation des macro déchets au cours des campagnes halieutiques", version 1.0 (2012) prepared by Badts & Galgani (Ifremer). It was prepared taking into account the suggestions of Marine Litter Technical Recommendations for the Implementation of MSFD Requirement (Galgani et al., 2011), CEFAS protocol for the litter recording (ICES, 2012), as well as the results of a relevant study in the Tyrrhenian Sea (Serena et al., 2011).

Aim: This document concerns a protocol for data collection on macro litter in the framework of scientific fishery surveys. The procedure covers observations of macro-litter present in the catches of fishing gears used during fisheries surveys (trawl nets, drags, hand lines, etc.). The protocol does not concern observation of floating litter or non-fisheries surveys.

Definition of marine litter: In the framework of the directive for the Marine Strategy for the Good Environmental Status of the sea, marine litter consists of items that have been deliberately discarded, unintentionally lost or transported by winds and rivers into the sea and on beaches. It mainly consists of plastics, wood, metals, glass, rubber, clothing and paper. Land-based sources account for up to 80% of marine litter – these include tourism, sewage and illegal or poorly managed landfills. The main sea-based sources are shipping and fishing (EU, 2010).

Abstract: This protocol is aimed to standardize the procedure to collect data on litter caught during the MEDITS trawl surveys. Information on litter composition is recorded in terms of total weight of litter not yet separated into different categories and number and weight by litter categories. Thirty four (34) different typologies were identified including 9 main categories related to litter material and 25 sub-categories related to source and main litter findings. Litter data are reported in a specific form to be integrated with haul information included in TA files, in order to estimate a standardized index of total and by categories litter abundance per square kilometer, aiming to future recommendation depending on litter sources.

Procedure to collect litter data: On board the vessel, the litter collected is weighted as total and split into the categories and sub-categories as reported in the list below. It is mandatory to record or estimate total weight, regardless the categories and subcategories, and number of items for each main category: It is facultative to register weight by categories and number of items by sub-category. In case of large amount of litter in the catch, all big sized objects of litter must be recorded while a subsample could be analysed for small sized litter (e.g. lids). Litter should be coded as total, by category and sub-category. Detailed data on total weight and litter composition must be reported in the specific form on litter.

Qualitative and quantitative data on the litter have to be connected to data regarding the characteristics of the haul (Date, code of haul, the GPS positions of the haul (start and end), trawled distance, average speed, characteristics of the haul (horizontal opening), depth of haul etc.), contained in file TA.

Data related to the fishing set and gear performance allows calculating the sampled surfaces for each haul and estimating a standardized index of total and by categories litter abundance per square kilometer.

A photograph of total litter separated from fish catch in a haul, including a label with main haul data (Figure 1), is recommended as it might be used to future analysis of litter composition by Image Analysis Tools.

Organisms attached on litter might be also noted.

The list of the litter typology and codes :

L0 No litter in the net

L1 Plastic (including PVC, polypropylene, polyethylene)

- L1a. Bags
- L1b. Bottles
- L1c. Food wrappers
- L1d. Sheets (table-cover, etc.)
- L1e. Hard plastic objects (crates, containers, tubes, ash-trays, lids, etc.)
- L1f. Fishing nets
- L1g. Fishing lines
- L1h. Other fishing related (pots, floats, etc.)
- L1i. Synthetic ropes/strapping bands
- L1j. others

L2 Ruber

- L2a. Tyres
- L2b. Other (gloves, floats, boots/shoes, olskins, sanitaries)

L3 Metal

- L3a. Beverage cans
- L3b. Other food cans/wrappers
- L3c. Middle size containers (of paint, oil, chemicals)
- L3d. Large metalic objects (barrels, pieces of machinery, electric appliances)
- L3e. Cables
- L3f. Fishing related (hooks, spears, etc.)
- L3g. remnant from the war

L4 Glass / Ceramic/Concrete

- L4a. Bottles
- L4b. Pieces of glass
- L4c. Ceramic jars
- L4d. Large objects (ceramic basins, etc.)

L5 Cloth (textil) / Natural fibres

- L5a. Clothing (clothes, shoes, etc.)
- L5b. Large pieces (carpets, mattresses, etc.)
- L5c. Natural ropes
- L5d. Sanitaries (diapers, cotton buds, etc.)

L6 Wood processed (palettes, crates, etc.)

L7 Paper and cardboard

L8 Other

L9 Unspecified

References

- Badts V., & F. Galgani, 2012. Procédure pour l'observation des macro déchets au cours des campagnes halieutiques", version 1.0 (2012) (Ifremer).
- European Union, 2010. Marine Litter: Time To Clean Up Our Act. http://ec.europa.eu/environment/marine/pdf/flyer_marine_litter.pdf
- ICES. 2012. Manual for the International Bottom Trawl Surveys. Series of ICES Survey Protocols. SISP 1-IBTS VIII. 68 pp.
- Galgani F., G.Hanke, S. Werner & H. Piha, 2011. Marine Litter Technical Recommendations for the Implementation of MSFD Requirement. MSFD GES Technical Subgroup Marine Litter. JRC Scientific and Technical Reports. EUR 25009 EN. ISSN 1831-9424. DOI 10.2788/92438 : 93 pp.

Serena F., A.J Abella., R.T.Baino, E. Cecchi, M. Ria , R. Silvestri & A. Voliani, 2011. Anthropogenic waste in the Marine Ecosystem. Biol. Mar. Mediterr. 18 (1): 161-164

Figure 1. Litter collected during a MEDITS haul in Argosaronikos Gulf (Aegean Sea).

Campaign:		Date :					Haul :	
TOTAL weight of litter in the haul (kg) :								

	Type of Litter	Weight (kg) (mandatory for category and sub- category)	Number (facultative for subcategory)	Number (mandatory for category)
LO	No litter in the net			
L1 Plastic	 a. Bags b. Bottles c. Food wrappers d. Sheets (table covers, e.t.c.) e. Hard plastic objects (crates, containers, tubes, ash-trays, lids, etc.) f. Fishing nets g. Fishing lines h. Other fishing related (pots, floats, etc.) i. Ropes/strapping bands 			
L2 Rubber	j others a. Tyres b. Other (gloves, boots/shoes, olskins etc.)			
L3 Metal	 a. Beverage cans b. Other food cans/wrappers c. Middle size containers (of paint, oil, chemicals) d. Large metalic objects (barrels, pieces of machinery, electric appliances) e. Cables f. Fishing related (hooks, spears, etc.) g. remnant from the war 			
L4 Glass / Ceramic/ Concrete	 a. Bottles b. Pieces of glass c. Ceramic jars d. Large objects (specify) 			
L5 Cloth (textil)/ natural fibres	 a. Clothing (clothes, shoes) b. Large pieces (carpets, mattresses, etc) (specify) c. Natural ropes d. Sanitaries (diapers, cotton buds, etc.) 			
	processed (palettes, crates, etc.) and cardboard			

L8 Other (specify)		
L9 Unspecified		
Responsible:		
Remarks :		

XVIII. Internal rules of the MEDITS group

Adopted at the MEDITS meeting, Split (Croatia), 15-16/06/2010 and updated in 2016 and 2017

1.Objective of the document

This document presents the way of working of the international group organised to coordinate the activity done by different countries to implement the MEDITS surveys.

2.The MEDITS survey initiative

Some Mediterranean countries have decided to join their efforts to carry out systematic bottom trawl surveys (acronym MEDITS) to produce basic information on benthic and demersal species in term of life history traits, population and community distribution and demographic structure.

The initiative started in 1993 and the first MEDITS survey was conducted by four countries in 1994. Since 2001, the European countries bordering the Mediterranean Sea are obliged to carry out MEDITS surveys yearly in the framework of the European Data Collection regulation. In 2010, ten Mediterranean countries collaborated in the project, and permanent links are maintained with the relevant bodies of the European Union and GFCM. All the information related to the MEDITS surveys is given in the <u>MEDITS website</u>.

All the countries interested to contribute to this challenge in view of extending the MEDITS survey coverage in the Mediterranean and Black Sea are warmly welcome in the MEDITS initiative.

3.The mandate of the MEDITS group

The MEDITS group has been created to coordinate the activity done in the MEDITS framework. Basically the aim of the group is to ensure consistency and coherence of the MEDITS surveys into space and time. With this goal, the group can review the standards defined to carry out the survey, including the sampling scheme, the gears used and the common observations to be done during the surveys. It can be entrusted with questions related to quality management of the surveys as well as about common management of the data. The group may also incite for the development of common research between the partners.

The terms of reference of the group include requests from the EU-RCM Med & BS, issues addressed by the GFCM, and questions from internal initiative.

4. Composition of the MEDITS group

The MEDITS group is open to all the scientists involved in the MEDITS surveys.

In each country participating in the MEDITS surveys, the contact point is the national coordinator of MEDITS. When relevant taking into account the national organisation of research activity and the characteristics of the surveyed area, regional coordinators may be identified near a national coordinator.

The activity of the group is managed by a steering committee.

4.1 The steering committee

The steering committee is the reference entity of the MEDITS group. The steering committee validates all the decisions taken in the name of the MEDITS group. It endorses the terms of reference, timings and agendas of the MEDITS sessions. It ratifies the conclusions and recommendations elaborated by the group.

The MEDITS steering committee is composed by scientists coming from the research groups involved in the MEDITS surveys, on the basis of one member by country. These scientists are the national coordinators of the MEDITS survey or their representative.

4.2 Chairpersonship

The MEDITS coordinator is in charge of animation of the MEDITS group, including the annual sessions of the group (preparation of the agenda, convening of the meeting, chair of the session, coordination and spreading of the report) and the in between activity (relationship with the other bodies, coordination of the tasks, management of the internal communication). The coordinator (or representative from the steering committee) participates in the RCM Med&BS upon request, for ensuring the link between the two Groups.

The mandate of the coordinator of the MEDITS group is for three years. The new coordinator is nominated by the steering committee at the end of an annual session, for immediate effect. One coordinator can be nominated for a maximum of two consecutive mandates. When the MEDITS coordinator is the national coordinator of one partner, a new national coordinator is nominated for this country.

5. Internal rules of the group

5.1 Annual session

The MEDITS group meets at least once a year. This meeting may include plenary sessions and sessions limited to the steering committee.

The plenary sessions of the MEDITS group are open to scientists from the member countries at the convenience of the relevant national coordinators. Furthermore, the MEDITS meetings are open to other scientists from invitation by the general coordinator.

In principle, date and place of the next annual meeting are defined by common agreement during the actual session. Nevertheless, they can be changed later by common agreement of the steering committee members, particularly to take into account the calendar of the reference bodies (GFCM and EU-RCM Med&BS). The place of the next meeting is decided from invitation given by the members.

The usual mode of working is elaboration of recommendations in the plenary meetings, then decision by consensus by the steering committee.

The requests submitted by external bodies (GFCM) must be transmitted to the MEDITS coordinator at least two months before the date of the next annual session.

5.2 Other activities

The MEDITS group may create ad hoc working groups in view of development of common activity on topics of interest in link with the MEDITS surveys (to progress on specific research questions, etc.). In this scope, the MEDITS group may incite and facilitate common publications at a global scale.

5.3 Website

A website presents the activity of the MEDITS group. It is managed by one of the members. The content of the website is validated by the steering committee. To facilitate exchanges between the members of the group, the group can open a private or a cooperative website.

6. Data Policy

The access to the MEDITS data was formerly regulated by the EU Reg. 199/2008 (Data Collection Framework) and currently by the regulation (EU) 2017/1004 (recast). Data that are made available for specific projects, like the preparation and publication of scientific papers/reports, or for the objectives of ad hoc working group, should be used only for these specific purposes (other uses are not allowed) and after the agreement of the MEDITS group. For that, it is recommended to present the proposals in the annual MEDITS coordination meetings. Another way to request this agreement could be through contact with the general and national coordinators.